Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NanoImpact ; 35: 100513, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821170

ABSTRACT

The past few decades of managing the uncertain risks associated with nanomaterials have provided valuable insights (knowledge gaps, tools, methods, etc.) that are equally important to promote safe and sustainable development and use of advanced materials. Based on these insights, the current paper proposes several actions to optimize the risk and sustainability governance of advanced materials. We emphasise the importance of establishing a European approach for risk and sustainability governance of advanced materials as soon as possible to keep up with the pace of innovation and to manage uncertainty among regulators, industry, SMEs and the public, regarding potential risks and impacts of advanced materials. Coordination of safe and sustainable advanced material research efforts, and data management according to the Findable, Accessible, Interoperable and Reusable (FAIR) principles will enhance the generation of regulatory-relevant knowledge. This knowledge is crucial to identify whether current regulatory standardised and harmonised test methods are adequate to assess advanced materials. At the same time, there is urgent need for responsible innovation beyond regulatory compliance which can be promoted through the Safe and Sustainable Innovation Approach. that combines the Safe and Sustainable by Design concept with Regulatory Preparedness, supported by a trusted environment. We further recommend consolidating all efforts and networks related to the risk and sustainability governance of advanced materials in a single, easy-to-use digital portal. Given the anticipated complexity and tremendous efforts required, we identified the need of establishing an organisational structure dedicated to aligning the fast technological developments in advanced materials with proper risk and sustainability governance. Involvement of multiple stakeholders in a trusted environment ensures a coordinated effort towards the safe and sustainable development, production, and use of advanced materials. The existing infrastructures and network of experts involved in the governance of nanomaterials would form a solid foundation for such an organisational structure.

2.
NanoImpact ; 32: 100483, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37734653

ABSTRACT

A roadmap was developed to strengthen standardisation activities for risk governance of nanotechnology. Its baseline is the available standardised and harmonised methods for nanotechnology developed by the International Organization for Standardization (ISO), the European Committee for Standardization (CEN), and the Organisation for Economic Co-operation and Development (OECD). In order to identify improvements and needs for new themes in standardisation work, an analysis of the state-of-the-art concepts and interpretations of risk governance of nanotechnology was performed. Eleven overall areas of action were identified, each including a subset of specific topics. Themes addressed include physical chemical characterisation, assessment of hazard, exposure, risk and socio-economic factors, as well as education & training and social dialogue. This has been visualised in a standardisation roadmap spanning a timeframe of ten years and including key outcomes and highlights of the analysis. Furthermore, the roadmap indicates potential areas of action for harmonisation and standardisation (H&S) for nanomaterials and nanotechnology. It also includes an evaluation of the current level (limited, moderate, intense) of ongoing H&S activities and indicates the time horizon for the different areas of action. As the identified areas differ in their state of development, the number and type of actions varied widely amongst the different actions towards achieving standardisation. Thus, priority areas were also identified. The overall objective of these actions is to strengthen risk governance towards a safe use of nanomaterials and nano-related products. Though not explicitly addressed, risk-based legislation and policies are supported via the proposed H&S actions.


Subject(s)
Nanostructures , Nanotechnology , Economic Factors , Educational Status , Reference Standards
3.
NanoImpact ; 30: 100461, 2023 04.
Article in English | MEDLINE | ID: mdl-37040858

ABSTRACT

There has been an increasing use of advanced materials, particularly manufactured nanomaterials, in industrial applications and consumer products in the last two decades. It has instigated concerns about the sustainability, in particular, risks and uncertainties regarding the interactions of the manufactured nanomaterials with humans and the environment. Consequently, significant resources in Europe and beyond have been invested into the development of tools and methods to support risk mitigation and risk management, and thus facilitate the research and innovation process of manufactured nanomaterials. The level of risk analysis is increasing, including assessment of socio-economic impacts, and sustainability aspects, moving from a conventional risk-based approach to a wider safety-and-sustainability-by-design perspective. Despite these efforts on tools and methods development, the level of awareness and use of most of such tools and methods by stakeholders is still limited. Issues of regulatory compliance and acceptance, reliability and trust, user-friendliness and compatibility with the users' needs are some of the factors which have been traditionally known to hinder their widespread use. Therefore, a framework is presented to quantify the readiness of different tools and methods towards their wider regulatory acceptance and downstream use by different stakeholders. The framework diagnoses barriers which hinder regulatory acceptance and wider usability of a tool/method based on their Transparency, Reliability, Accessibility, Applicability and Completeness (TRAAC framework). Each TRAAC pillar consists of criteria which help in evaluating the overall quality of the tools and methods for their (i) compatibility with regulatory frameworks and (ii) usefulness and usability for end-users, through a calculated TRAAC score based on the assessment. Fourteen tools and methods were assessed using the TRAAC framework as proof-of-concept and for user variability testing. The results provide insights into any gaps, opportunities, and challenges in the context of each of the 5 pillars of the TRAAC framework. The framework could be, in principle, adapted and extended to the evaluation of other type of tools & methods, even beyond the case of nanomaterials.


Subject(s)
Nanostructures , Humans , Reproducibility of Results , Risk Management , Risk Assessment/methods , Europe
4.
Int J Mol Sci ; 19(2)2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29364852

ABSTRACT

With the increasing interest in the potential benefits of nanotechnologies, concern is still growing that they may present emerging risks for workers. Various strategies have been developed to assess the exposure to nano-objects and their agglomerates and aggregates (NOAA) in the workplace, integrating different aerosol measurement instruments and taking into account multiple parameters that may influence NOAA toxicity. The present study proposes a multi-metric approach for measuring and sampling NOAA in the workplace, applied to three case studies in laboratories each dedicated to materials with different shapes and dimensionalities: graphene, nanowires, and nanoparticles. The study is part of a larger project with the aim of improving risk management tools in nanomaterials research laboratories. The harmonized methodology proposed by the Organization for Economic Cooperation and Development (OECD) has been applied, including information gathering about materials and processes, measurements with easy-to-use and hand-held real-time devices, air sampling with personal samplers, and off-line analysis using scanning electron microscopy. Significant values beyond which an emission can be attributed to the NOAA production process were identified by comparison of the particle number concentration (PNC) time series and the corresponding background levels in the three laboratories. We explored the relations between background PNC and microclimatic parameters. Morphological and elemental analysis of sampled filters was done to identify possible emission sources of NOAA during the production processes: rare particles, spherical, with average diameter similar to the produced NOAA were identified in the nanoparticles laboratory, so further investigation is recommended to confirm the potential for worker exposure. In conclusion, the information obtained should provide a valuable basis for improving risk management strategies in the laboratory at work.


Subject(s)
Air Pollutants, Occupational , Laboratories , Nanostructures , Occupational Exposure , Workplace , Environmental Monitoring/methods , Humans , Nanostructures/adverse effects , Nanostructures/chemistry , Nanostructures/ultrastructure , Occupational Health
SELECTION OF CITATIONS
SEARCH DETAIL
...