Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Eur Phys J C Part Fields ; 84(3): 214, 2024.
Article in English | MEDLINE | ID: mdl-39049893

ABSTRACT

Fermions are subject to the Pauli Exclusion Principle (PEP), which is grounded on the spin-statistics theorem and, hence, related to the very same structure of the underlying symmetries. The VIP-2 (VIolation of Pauli exclusion principle - 2) experiment has been performing extreme sensitivity tests of the PEP, up to its current and final configuration, exploiting several experimental setups designed to study different theoretical models of PEP violation, looking for a faint signal of physics Beyond the Standard Model.A current is introduced in the copper target to bring new electrons into the system and, hence, fulfill the requirements of the Messiah-Greenberg Super-Selection rule. The searched spin-statistics violating signal corresponds to X-rays emitted when the new electrons perform atomic transitions to the already filled fundamental level of copper. This work analyzes the set of the VIP-2 data corresponding to a test run of 68 days in a current modulated regime alternating no current with current data-taking in short periods (50 s each), instead the usual alternating months-long data-taking of each of these two phases. We propose an analysis method to improve the experiment's sensitivity: a spectral analysis constraint with the Discrete Fourier Transformation of the data. Compared to the spectrum-only analysis, about a factor of 1.5 of improvement to the limit for the probability of PEP violation for electrons was obtained.

2.
Appl Radiat Isot ; 197: 110822, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37141750

ABSTRACT

Large area Silicon Drift Detectors are employed in high sensitivity tests of the Pauli Exclusion Principle by the VIP-2 Collaboration. The experiment is operated in the extremely low cosmic background environment of the Gran Sasso underground National Laboratory of INFN. In this work an off-line analysis method is proposed which provides an additional background reduction, as well as a better calibration procedure. The study concerns in particular the charge sharing between nearby cells, and is applied to the data set collected during the 2018 VIP-2 campaign. The cross-talk effect inside the detectors array is described and an effective topological method to reject the background induced by charge sharing is outlined.

3.
Entropy (Basel) ; 25(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36832661

ABSTRACT

Models of dynamical wave function collapse consistently describe the breakdown of the quantum superposition with the growing mass of the system by introducing non-linear and stochastic modifications to the standard Schrödinger dynamics. Among them, Continuous Spontaneous Localization (CSL) was extensively investigated both theoretically and experimentally. Measurable consequences of the collapse phenomenon depend on different combinations of the phenomenological parameters of the model-the strength λ and the correlation length rC-and have led, so far, to the exclusion of regions of the admissible (λ-rC) parameters space. We developed a novel approach to disentangle the λ and rC probability density functions, which discloses a more profound statistical insight.

4.
Phys Rev Lett ; 129(13): 131301, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36206433

ABSTRACT

Investigations of possible violations of the Pauli exclusion principle represent critical tests of the microscopic space-time structure and properties. Space-time noncommutativity provides a class of universality for several quantum gravity models. In this context the VIP-2 lead experiment sets the strongest bounds, searching for the Pauli exclusion principle violating atomic transitions in lead, excluding the θ-Poincaré noncommutative quantum gravity models far above the Planck scale for nonvanishing θ_{µν} electriclike components, and up to 6.9×10^{-2} Planck scales if θ_{0i}=0.

SELECTION OF CITATIONS
SEARCH DETAIL