Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
J Proteome Res ; 23(4): 1285-1297, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38480473

ABSTRACT

C18ORF25 was recently shown to be phosphorylated at S67 by AMP-activated protein kinase (AMPK) in the skeletal muscle, following acute exercise in humans. Phosphorylation was shown to improve the ex vivo skeletal muscle contractile function in mice, but our understanding of the molecular mechanisms is incomplete. Here, we profiled the interactome of C18ORF25 in mouse myotubes using affinity purification coupled to mass spectrometry. This analysis included an investigation of AMPK-dependent and S67-dependent protein/protein interactions. Several nucleocytoplasmic and contractile-associated proteins were identified, which revealed a subset of GTPases that associate with C18ORF25 in an AMPK- and S67 phosphorylation-dependent manner. We confirmed that C18ORF25 is localized to the nucleus and the contractile apparatus in the skeletal muscle. Mice lacking C18Orf25 display defects in calcium handling specifically in fast-twitch muscle fibers. To investigate these mechanisms, we developed an integrated single fiber physiology and single fiber proteomic platform. The approach enabled a detailed assessment of various steps in the excitation-contraction pathway including SR calcium handling and force generation, followed by paired single fiber proteomic analysis. This enabled us to identify >700 protein/phenotype associations and 36 fiber-type specific differences, following loss of C18Orf25. Taken together, our data provide unique insights into the function of C18ORF25 and its role in skeletal muscle physiology.


Subject(s)
AMP-Activated Protein Kinases , Muscle Fibers, Slow-Twitch , Mice , Humans , Animals , Muscle Fibers, Slow-Twitch/metabolism , AMP-Activated Protein Kinases/metabolism , Proteomics/methods , Calcium/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Fast-Twitch/metabolism , Muscle, Skeletal/metabolism , Muscle Contraction , Mass Spectrometry
2.
J Virol ; 98(3): e0180223, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38334329

ABSTRACT

With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE: Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.


Subject(s)
Angiotensin-Converting Enzyme 2 , Kidney , Organoids , SARS-CoV-2 , Virus Internalization , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/virology , Kidney/cytology , Kidney/drug effects , Kidney/metabolism , Kidney/virology , Lisinopril/pharmacology , Lisinopril/metabolism , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Organoids/virology , Pandemics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/virology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/virology , Receptors, Coronavirus/metabolism , Models, Biological , Serine Endopeptidases/metabolism , Endosomes/drug effects , Endosomes/metabolism , Endosomes/virology , Gene Expression Regulation/drug effects , Stem Cells/cytology
3.
Dev Cell ; 59(1): 91-107.e6, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38091997

ABSTRACT

Genomic regulation of cardiomyocyte differentiation is central to heart development and function. This study uses genetic loss-of-function human-induced pluripotent stem cell-derived cardiomyocytes to evaluate the genomic regulatory basis of the non-DNA-binding homeodomain protein HOPX. We show that HOPX interacts with and controls cardiac genes and enhancer networks associated with diverse aspects of heart development. Using perturbation studies in vitro, we define how upstream cell growth and proliferation control HOPX transcription to regulate cardiac gene programs. We then use cell, organoid, and zebrafish regeneration models to demonstrate that HOPX-regulated gene programs control cardiomyocyte function in development and disease. Collectively, this study mechanistically links cell signaling pathways as upstream regulators of HOPX transcription to control gene programs underpinning cardiomyocyte identity and function.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Animals , Humans , Myocytes, Cardiac/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Zebrafish/metabolism , Cell Differentiation/genetics , Cell Proliferation
4.
Genome Biol ; 24(1): 209, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723583

ABSTRACT

Identifying spatially variable genes (SVGs) is a key step in the analysis of spatially resolved transcriptomics data. SVGs provide biological insights by defining transcriptomic differences within tissues, which was previously unachievable using RNA-sequencing technologies. However, the increasing number of published tools designed to define SVG sets currently lack benchmarking methods to accurately assess performance. This study compares results of 6 purpose-built packages for SVG identification across 9 public and 5 simulated datasets and highlights discrepancies between results. Additional tools for generation of simulated data and development of benchmarking methods are required to improve methods for identifying SVGs.


Subject(s)
Benchmarking , Transcriptome , Gene Expression Profiling
5.
EMBO Rep ; 24(10): e55043, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37551717

ABSTRACT

The cardiac endothelium influences ventricular chamber development by coordinating trabeculation and compaction. However, the endothelial-specific molecular mechanisms mediating this coordination are not fully understood. Here, we identify the Sox7 transcription factor as a critical cue instructing cardiac endothelium identity during ventricular chamber development. Endothelial-specific loss of Sox7 function in mice results in cardiac ventricular defects similar to non-compaction cardiomyopathy, with a change in the proportions of trabecular and compact cardiomyocytes in the mutant hearts. This phenotype is paralleled by abnormal coronary artery formation. Loss of Sox7 function disrupts the transcriptional regulation of the Notch pathway and connexins 37 and 40, which govern coronary arterial specification. Upon Sox7 endothelial-specific deletion, single-nuclei transcriptomics analysis identifies the depletion of a subset of Sox9/Gpc3-positive endocardial progenitor cells and an increase in erythro-myeloid cell lineages. Fate mapping analysis reveals that a subset of Sox7-null endothelial cells transdifferentiate into hematopoietic but not cardiomyocyte lineages. Our findings determine that Sox7 maintains cardiac endothelial cell identity, which is crucial to the cellular cross-talk that drives ventricular compaction and coronary artery development.


Subject(s)
Coronary Vessels , Endothelial Cells , Animals , Mice , Coronary Vessels/metabolism , Endothelial Cells/metabolism , Myocytes, Cardiac/metabolism , Gene Expression Regulation , Endothelium/metabolism , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism
6.
Am J Hum Genet ; 110(9): 1600-1605, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37607539

ABSTRACT

Recent studies in non-human model systems have shown therapeutic potential of nucleoside-modified messenger RNA (modRNA) treatments for lysosomal storage diseases. Here, we assessed the efficacy of a modRNA treatment to restore the expression of the galactosidase alpha (GLA), which codes for α-Galactosidase A (α-GAL) enzyme, in a human cardiac model generated from induced pluripotent stem cells (iPSCs) derived from two individuals with Fabry disease. Consistent with the clinical phenotype, cardiomyocytes from iPSCs derived from Fabry-affected individuals showed accumulation of the glycosphingolipid Globotriaosylceramide (GB3), which is an α-galactosidase substrate. Furthermore, the Fabry cardiomyocytes displayed significant upregulation of lysosomal-associated proteins. Upon GLA modRNA treatment, a subset of lysosomal proteins were partially restored to wild-type levels, implying the rescue of the molecular phenotype associated with the Fabry genotype. Importantly, a significant reduction of GB3 levels was observed in GLA modRNA-treated cardiomyocytes, demonstrating that α-GAL enzymatic activity was restored. Together, our results validate the utility of iPSC-derived cardiomyocytes from affected individuals as a model to study disease processes in Fabry disease and the therapeutic potential of GLA modRNA treatment to reduce GB3 accumulation in the heart.


Subject(s)
Fabry Disease , Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac , RNA , Fabry Disease/genetics , Fabry Disease/therapy , RNA, Messenger
7.
Stem Cell Reports ; 18(6): 1308-1324, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37315523

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe coronavirus disease 2019 (COVID-19). To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR-Cas9-mediated knockout of ACE2, we demonstrated that angiotensin-converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but that further processing in lung cells required TMPRSS2, while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Stem Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Lung
8.
STAR Protoc ; 4(3): 102371, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37384522

ABSTRACT

Here, we provide a protocol for next-generation human cardiac organoid modeling containing markers of vascularized tissues. We describe steps for cardiac differentiation, harvesting cardiac cells, and generating vascularized human cardiac organoids. We then detail downstream analysis of functional parameters and fluorescence labeling of human cardiac organoids. This protocol is useful for high throughput disease modeling, drug discovery, and providing mechanistic insight into cell-cell and cell-matrix interactions. For complete details on the use and execution of this protocol, please refer to Voges et al.1 and Mills et al.2.


Subject(s)
Cell Communication , Organoids , Humans , Cell Differentiation , Drug Discovery , Heart
9.
Cell Rep ; 42(5): 112322, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37105170

ABSTRACT

Crosstalk between cardiac cells is critical for heart performance. Here we show that vascular cells within human cardiac organoids (hCOs) enhance their maturation, force of contraction, and utility in disease modeling. Herein we optimize our protocol to generate vascular populations in addition to epicardial, fibroblast, and cardiomyocyte cells that self-organize into in-vivo-like structures in hCOs. We identify mechanisms of communication between endothelial cells, pericytes, fibroblasts, and cardiomyocytes that ultimately contribute to cardiac organoid maturation. In particular, (1) endothelial-derived LAMA5 regulates expression of mature sarcomeric proteins and contractility, and (2) paracrine platelet-derived growth factor receptor ß (PDGFRß) signaling from vascular cells upregulates matrix deposition to augment hCO contractile force. Finally, we demonstrate that vascular cells determine the magnitude of diastolic dysfunction caused by inflammatory factors and identify a paracrine role of endothelin driving dysfunction. Together this study highlights the importance and role of vascular cells in organoid models.


Subject(s)
Endothelial Cells , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Pericytes/metabolism , Signal Transduction , Organoids/metabolism
11.
bioRxiv ; 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36172136

ABSTRACT

SARS-CoV-2 primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe COVID-19. To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR- Cas9 mediated knock-out of ACE2, we demonstrated that angiotensin converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but further processing in lung cells required TMPRSS2 while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems. One-sentence summary: Rational treatment strategies for SARS-CoV-2 derived from human PSC models.

12.
Bioinformatics ; 38(20): 4720-4726, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36005887

ABSTRACT

MOTIVATION: Single cell RNA-Sequencing (scRNA-seq) has rapidly gained popularity over the last few years for profiling the transcriptomes of thousands to millions of single cells. This technology is now being used to analyse experiments with complex designs including biological replication. One question that can be asked from single cell experiments, which has been difficult to directly address with bulk RNA-seq data, is whether the cell type proportions are different between two or more experimental conditions. As well as gene expression changes, the relative depletion or enrichment of a particular cell type can be the functional consequence of disease or treatment. However, cell type proportion estimates from scRNA-seq data are variable and statistical methods that can correctly account for different sources of variability are needed to confidently identify statistically significant shifts in cell type composition between experimental conditions. RESULTS: We have developed propeller, a robust and flexible method that leverages biological replication to find statistically significant differences in cell type proportions between groups. Using simulated cell type proportions data, we show that propeller performs well under a variety of scenarios. We applied propeller to test for significant changes in cell type proportions related to human heart development, ageing and COVID-19 disease severity. AVAILABILITY AND IMPLEMENTATION: The propeller method is publicly available in the open source speckle R package (https://github.com/phipsonlab/speckle). All the analysis code for the article is available at the associated analysis website: https://phipsonlab.github.io/propeller-paper-analysis/. The speckle package, analysis scripts and datasets have been deposited at https://doi.org/10.5281/zenodo.7009042. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
COVID-19 , Single-Cell Analysis , Gene Expression Profiling , Humans , RNA , Sequence Analysis, RNA , Software
13.
Front Immunol ; 13: 846281, 2022.
Article in English | MEDLINE | ID: mdl-35371075

ABSTRACT

Thymic epithelium is critical for the structural integrity of the thymus and for T cell development. Within the fully formed thymus, large numbers of hematopoietic cells shape the thymic epithelium into a scaffold-like structure which bears little similarity to classical epithelial layers, such as those observed in the skin, intestine or pancreas. Here, we show that human thymic epithelial cells (TECs) possess an epithelial identity that also incorporates the expression of mesenchymal cell associated genes, whose expression levels vary between medullary and cortical TECs (m/cTECs). Using pluripotent stem cell (PSC) differentiation systems, we identified a unique population of cells that co-expressed the master TEC transcription factor FOXN1, as well as the epithelial associated marker EPCAM and the mesenchymal associated gene CD90. Using the same serum free culture conditions, we also observed co-expression of EPCAM and CD90 on cultured TECs derived from neonatal human thymus in vitro. Single cell RNA-sequencing revealed these cultured TECs possessed an immature mTEC phenotype and expressed epithelial and mesenchymal associated genes, such as EPCAM, CLDN4, CD90 and COL1A1. Importantly, flow cytometry and single cell RNA-sequencing analysis further confirmed the presence of an EPCAM+CD90+ population in the CD45- fraction of neonatal human thymic stromal cells in vivo. Using the human thymus cell atlas, we found that cTECs displayed more pronounced mesenchymal characteristics than mTECs during embryonic development. Collectively, these results suggest human TECs possess a hybrid gene expression program comprising both epithelial and mesenchymal elements, and provide a basis for the further exploration of thymus development from primary tissues and from the in vitro differentiation of PSCs.


Subject(s)
Epithelial Cells , RNA , Cell Differentiation , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cells/metabolism , Epithelium , Humans , RNA/metabolism , Thy-1 Antigens/metabolism , Thymus Gland
15.
J Mol Cell Cardiol ; 163: 20-32, 2022 02.
Article in English | MEDLINE | ID: mdl-34624332

ABSTRACT

Understanding the spatial gene expression and regulation in the heart is key to uncovering its developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information in organs such as the heart, but few utilize intuitive true-to-life three-dimensional representations to analyze and visualise results. Here we combined transcriptomics with 3D-modelling to interrogate spatial gene expression in the mammalian heart. For this, we microdissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart. Our study has unveiled known and novel genes that display complex spatial expression in the heart sub-compartments. We have also created 3D-cardiomics, an interface for spatial transcriptome analysis and visualization that allows the easy exploration of these data in a 3D model of the heart. 3D-cardiomics is accessible from http://3d-cardiomics.erc.monash.edu/.


Subject(s)
Heart , Transcriptome , Animals , Gene Expression Profiling/methods , Mammals , Mice
16.
Eur Heart J ; 42(32): 3063-3073, 2021 08 21.
Article in English | MEDLINE | ID: mdl-34263907

ABSTRACT

AIMS: The aim of this study was to determine the frequency of heterozygous truncating ALPK3 variants (ALPK3tv) in patients with hypertrophic cardiomyopathy (HCM) and confirm their pathogenicity using burden testing in independent cohorts and family co-segregation studies. METHODS AND RESULTS: In a discovery cohort of 770 index patients with HCM, 12 (1.56%) were heterozygous for ALPK3tv [odds ratio(OR) 16.11, 95% confidence interval (CI) 7.94-30.02, P = 8.05e-11] compared to the Genome Aggregation Database (gnomAD) population. In a validation cohort of 2047 HCM probands, 32 (1.56%) carried heterozygous ALPK3tv (OR 16.17, 95% CI 10.31-24.87, P < 2.2e-16, compared to gnomAD). Combined logarithm of odds score in seven families with ALPK3tv was 2.99. In comparison with a cohort of genotyped patients with HCM (n = 1679) with and without pathogenic sarcomere gene variants (SP+ and SP-), ALPK3tv carriers had a higher prevalence of apical/concentric patterns of hypertrophy (60%, P < 0.001) and of a short PR interval (10%, P = 0.009). Age at diagnosis and maximum left ventricular wall thickness were similar to SP- and left ventricular systolic impairment (6%) and non-sustained ventricular tachycardia (31%) at baseline similar to SP+. After 5.3 ± 5.7 years, 4 (9%) patients with ALPK3tv died of heart failure or had cardiac transplantation (log-rank P = 0.012 vs. SP- and P = 0.425 vs. SP+). Imaging and histopathology showed extensive myocardial fibrosis and myocyte vacuolation. CONCLUSIONS: Heterozygous ALPK3tv are pathogenic and segregate with a characteristic HCM phenotype.


Subject(s)
Cardiomyopathy, Hypertrophic , Muscle Proteins/genetics , Protein Kinases/genetics , Cardiomyopathy, Hypertrophic/genetics , Heterozygote , Humans , Mutation , Sarcomeres
17.
Circulation ; 144(12): 947-960, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34264749

ABSTRACT

BACKGROUND: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the buildup of acidic metabolites results in decreased intracellular and extracellular pH, which can reach as low as 6.0 to 6.5. The resulting tissue acidosis exacerbates ischemic injury and significantly affects cardiac function. METHODS: We used genetic and pharmacologic methods to investigate the role of acid-sensing ion channel 1a (ASIC1a) in cardiac IRI at the cellular and whole-organ level. Human induced pluripotent stem cell-derived cardiomyocytes as well as ex vivo and in vivo models of IRI were used to test the efficacy of ASIC1a inhibitors as pre- and postconditioning therapeutic agents. RESULTS: Analysis of human complex trait genetics indicates that variants in the ASIC1 genetic locus are significantly associated with cardiac and cerebrovascular ischemic injuries. Using human induced pluripotent stem cell-derived cardiomyocytes in vitro and murine ex vivo heart models, we demonstrate that genetic ablation of ASIC1a improves cardiomyocyte viability after acute IRI. Therapeutic blockade of ASIC1a using specific and potent pharmacologic inhibitors recapitulates this cardioprotective effect. We used an in vivo model of myocardial infarction and 2 models of ex vivo donor heart procurement and storage as clinical models to show that ASIC1a inhibition improves post-IRI cardiac viability. Use of ASIC1a inhibitors as preconditioning or postconditioning agents provided equivalent cardioprotection to benchmark drugs, including the sodium-hydrogen exchange inhibitor zoniporide. At the cellular and whole organ level, we show that acute exposure to ASIC1a inhibitors has no effect on cardiac ion channels regulating baseline electromechanical coupling and physiologic performance. CONCLUSIONS: Our data provide compelling evidence for a novel pharmacologic strategy involving ASIC1a blockade as a cardioprotective therapy to improve the viability of hearts subjected to IRI.


Subject(s)
Acid Sensing Ion Channels/biosynthesis , Acid Sensing Ion Channels/genetics , Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Animals , Cells, Cultured , Female , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Isolated Heart Preparation/methods , Male , Mice , Mice, Knockout , Myocardial Ischemia/therapy , Myocardial Reperfusion Injury/therapy , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Polymorphism, Single Nucleotide/physiology , Recovery of Function/drug effects , Recovery of Function/physiology , Spider Venoms/pharmacology
18.
iScience ; 24(6): 102537, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34142046

ABSTRACT

Long non-coding RNAs (lncRNAs) have been demonstrated to influence numerous biological processes, being strongly implicated in the maintenance and physiological function of various tissues including the heart. The lncRNA OIP5-AS1 (1700020I14Rik/Cyrano) has been studied in several settings; however its role in cardiac pathologies remains mostly uncharacterized. Using a series of in vitro and ex vivo methods, we demonstrate that OIP5-AS1 is regulated during cardiac development in rodent and human models and in disease settings in mice. Using CRISPR, we engineered a global OIP5-AS1 knockout (KO) mouse and demonstrated that female KO mice develop exacerbated heart failure following cardiac pressure overload (transverse aortic constriction [TAC]) but male mice do not. RNA-sequencing of wild-type and KO hearts suggest that OIP5-AS1 regulates pathways that impact mitochondrial function. Thus, these findings highlight OIP5-AS1 as a gene of interest in sex-specific differences in mitochondrial function and development of heart failure.

19.
J Cell Physiol ; 236(12): 8160-8170, 2021 12.
Article in English | MEDLINE | ID: mdl-34170016

ABSTRACT

Epidermal growth factor (EGF) receptors (ErbB1-ErbB4) promote cardiac development and growth, although the specific EGF ligands and receptor isoforms involved in growth/repair versus pathology remain undefined. We challenged ventricular cardiomyocytes with EGF-like ligands and observed that selective activation of ErbB4 (the receptor for neuregulin 1 [NRG1]), but not ErbB1 (the receptor for EGF, EGFR), stimulated hypertrophy. This lack of direct ErbB1-mediated hypertrophy occurred despite robust activation of extracellular-regulated kinase 1/2 (ERK) and protein kinase B. Hypertrophic responses to NRG1 were unaffected by the tyrosine kinase inhibitor (AG1478) at concentrations that are selective for ErbB1 over ErbB4. NRG1-induced cardiomyocyte enlargement was suppressed by small interfering RNA (siRNA) knockdown of ErbB4 and ErbB2, whereas ERK phosphorylation was only suppressed by ErbB4 siRNA. Four ErbB4 isoforms exist (JM-a/JM-b and CYT-1/CYT-2), generated by alternative splicing, and their expression declines postnatally and following cardiac hypertrophy. Silencing of all four isoforms in cardiomyocytes, using an ErbB4 siRNA, abrogated NRG1-induced hypertrophic promoter/reporter activity, which was rescued by coexpression of knockdown-resistant versions of the ErbB4 isoforms. Thus, ErbB4 confers cardiomyocyte hypertrophy to NRG1, and all four ErbB4 isoforms possess the capacity to mediate this effect.


Subject(s)
Hypertrophy/metabolism , Myocytes, Cardiac/metabolism , Protein Isoforms/metabolism , Receptor, ErbB-4/metabolism , Alternative Splicing/genetics , Animals , Cell Proliferation/physiology , Humans , Phosphorylation/physiology , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Receptor, ErbB-4/genetics , Signal Transduction/physiology
20.
Brief Funct Genomics ; 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34170300

ABSTRACT

Heart formation in the zebrafish involves a rapid, complex series of morphogenetic events in three-dimensional space that spans cardiac lineage specification through to chamber formation and maturation. This process is tightly orchestrated by a cardiac gene regulatory network (GRN), which ensures the precise spatio-temporal deployment of genes critical for heart formation. Alterations of the timing or spatial localisation of gene expression can have a significant impact in cardiac ontogeny and may lead to heart malformations. Hence, a better understanding of the cellular and molecular basis of congenital heart disease relies on understanding the behaviour of cardiac GRNs with precise spatiotemporal resolution. Here, we review the recent technical advances that have expanded our capacity to interrogate the cardiac GRN in zebrafish. In particular, we focus on studies utilising high-throughput technologies to systematically dissect gene expression patterns, both temporally and spatially during heart development.

SELECTION OF CITATIONS
SEARCH DETAIL
...