Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674812

ABSTRACT

BACKGROUND: The prolonged activation of microglia and excessive production of pro-inflammatory cytokines can lead to chronic neuroinflammation, which is an important pathological feature of Parkinson's disease (PD). We have previously reported the protective effect of Vitamin C (Vit C) on a mouse model of PD. However, its effect on microglial functions in neuroinflammation remains to be clarified. Glycogen synthase kinase 3ß (GSK3ß) is a serine/threonine kinase having a role in driving inflammatory responses, making GSK3ß inhibitors a promising target for anti-inflammatory research. METHODS: In this study, we investigated the possible involvement of GSK3ß in Vit C neuroprotective effects by using a well-known 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of PD and a cellular model of neuroinflammation, represented by Lipopolysaccharide (LPS)-activated BV-2 microglial cells. RESULTS: We demonstrated the ability of Vit C to decrease the expression of different mediators involved in the inflammatory responses, such as TLR4, p-IKBα, and the phosphorylated forms of p38 and AKT. In addition, we demonstrated for the first time that Vit C promotes the GSK3ß inhibition by stimulating its phosphorylation at Ser9. CONCLUSION: This study evidenced that Vit C exerts an anti-inflammatory function in microglia, promoting the upregulation of the M2 phenotype through the activation of the Wnt/ß-catenin signaling pathway.


Subject(s)
Anti-Inflammatory Agents , Ascorbic Acid , Neuroinflammatory Diseases , Neuroprotective Agents , Animals , Male , Mice , Anti-Inflammatory Agents/pharmacology , Ascorbic Acid/pharmacology , Cell Line , Disease Models, Animal , Glycogen Synthase Kinase 3 beta/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Phosphorylation/drug effects , Serine/metabolism
2.
Cells ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38534350

ABSTRACT

Inflammatory skin diseases include a series of disorders characterized by a strong activation of the innate and adaptive immune system in which proinflammatory cytokines play a fundamental role in supporting inflammation. Skin inflammation is a complex process influenced by various factors, including genetic and environmental factors, characterized by the dysfunction of both immune and non-immune cells. Psoriasis (PS) and atopic dermatitis (AD) are the most common chronic inflammatory conditions of the skin whose pathogeneses are very complex and multifactorial. Both diseases are characterized by an immunological dysfunction involving a predominance of Th1 and Th17 cells in PS and of Th2 cells in AD. Suppressor of cytokine signaling (SOCS) proteins are intracellular proteins that control inflammatory responses by regulating various signaling pathways activated by proinflammatory cytokines. SOCS signaling is involved in the regulation and progression of inflammatory responses in skin-resident and non-resident immune cells, and recent data suggest that these negative modulators are dysregulated in inflammatory skin diseases such as PS and AD. This review focuses on the current understanding about the role of SOCS proteins in modulating the activity of inflammatory mediators implicated in the pathogenesis of inflammatory skin diseases such as PS and AD.


Subject(s)
Dermatitis, Atopic , Psoriasis , Humans , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Signal Transduction/genetics , Cytokines/metabolism , Inflammation
3.
Nutrients ; 16(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38542782

ABSTRACT

Dietary supplements enriched with bioactive compounds represent a promising approach to influence physiological processes and enhance longevity and overall health. Cynara cardunculus var. scolymus serves as a functional food supplement with a high concentration of bioactive compounds, which offers various health-promoting benefits. Several chronic diseases have metabolic, genetic, or inflammatory origins, which are frequently interconnected. Pharmacological treatments, although effective, often result in undesirable side effects. In this context, preventive approaches are gaining increased attention. Recent literature indicates that the consumption of bioactive compounds in the diet can positively influence the organism's biological functions. Polyphenols, well-known for their health benefits, are widely recognized as valuable compounds in preventing/combating various pathologies related to lifestyle, metabolism, and aging. The C. scolymus belonging to the Asteraceae family, is widely used in the food and herbal medicine fields for its beneficial properties. Although the inflorescences (capitula) of the artichoke are used for food and culinary purposes, preparations based on artichoke leaves can be used as an active ingredient in herbal medicines. Cynara scolymus shows potential benefits in different domains. Its nutritional value and health benefits make it a promising candidate for improving overall well-being. C. scolymus exhibits anti-inflammatory, antioxidant, liver-protective, bile-expelling, antimicrobial, and lipid-lowering neuroprotective properties. Different studies demonstrate that oxidative stress is the leading cause of the onset and progression of major human health disorders such as cardiovascular, neurological, metabolic, and cancer diseases. The large amount of polyphenol found in C. scolymus has an antioxidant activity, enabling it to neutralize free radicals, preventing cellular damage. This reduces the subsequent risk of developing conditions such as cancer, diabetes, and cardiovascular diseases. Additionally, these polyphenols demonstrate anti-inflammatory activity, which is closely associated with their antioxidant properties. As a result, C. scolymus has the potential to contribute to the treatment of chronic diseases, including intestinal disorders, cardiovascular diseases, and neurodegenerative pathologies. The current review discussed the nutritional profiles, potential benefits, and pharmacological effects of C. scolymus.


Subject(s)
Cardiovascular Diseases , Cynara scolymus , Neoplasms , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Polyphenols/pharmacology , Polyphenols/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Chronic Disease , Anti-Inflammatory Agents/pharmacology
4.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338906

ABSTRACT

Cell-to-cell communication is essential for the appropriate development and maintenance of homeostatic conditions in the central nervous system. Extracellular vesicles have recently come to the forefront of neuroscience as novel vehicles for the transfer of complex signals between neuronal cells. Extracellular vesicles are membrane-bound carriers packed with proteins, metabolites, and nucleic acids (including DNA, mRNA, and microRNAs) that contain the elements present in the cell they originate from. Since their discovery, extracellular vesicles have been studied extensively and have opened up new understanding of cell-cell communication; they may cross the blood-brain barrier in a bidirectional way from the bloodstream to the brain parenchyma and vice versa, and play a key role in brain-periphery communication in physiology as well as pathology. Neurons and glial cells in the central nervous system release extracellular vesicles to the interstitial fluid of the brain and spinal cord parenchyma. Extracellular vesicles contain proteins, nucleic acids, lipids, carbohydrates, and primary and secondary metabolites. that can be taken up by and modulate the behaviour of neighbouring recipient cells. The functions of extracellular vesicles have been extensively studied in the context of neurodegenerative diseases. The purpose of this review is to analyse the role extracellular vesicles extracellular vesicles in central nervous system cell communication, with particular emphasis on the contribution of extracellular vesicles from different central nervous system cell types in maintaining or altering central nervous system homeostasis.


Subject(s)
Extracellular Vesicles , MicroRNAs , Central Nervous System/physiology , Extracellular Vesicles/physiology , Neurons , Cell Communication/physiology
5.
Brain Sci ; 13(8)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37626582

ABSTRACT

The human gut microbiota is a complex ecosystem of mutualistic microorganisms that play a critical role in maintaining human health through their individual interactions and with the host. The normal gastrointestinal microbiota plays a specific physiological function in host immunomodulation, nutrient metabolism, vitamin synthesis, xenobiotic and drug metabolism, maintenance of structural and functional integrity of the gut mucosal barrier, and protection against various pathogens. Inflammation is the innate immune response of living tissues to injury and damage caused by infections, physical and chemical trauma, immunological factors, and genetic derangements. Most diseases are associated with an underlying inflammatory process, with inflammation mediated through the contribution of active immune cells. Current strategies to control inflammatory pathways include pharmaceutical drugs, lifestyle, and dietary changes. However, this remains insufficient. Bioactive compounds (BCs) are nutritional constituents found in small quantities in food and plant extracts that provide numerous health benefits beyond their nutritional value. BCs are known for their antioxidant, antimicrobial, anticarcinogenic, anti-metabolic syndrome, and anti-inflammatory properties. Bioactive compounds have been shown to reduce the destructive effect of inflammation on tissues by inhibiting or modulating the effects of inflammatory mediators, offering hope for patients suffering from chronic inflammatory disorders like atherosclerosis, arthritis, inflammatory bowel diseases, and neurodegenerative diseases. The aim of the present review is to summarise the role of natural bioactive compounds in modulating inflammation and protecting human health, for their safety to preserve gut microbiota and improve their physiology and behaviour.

6.
Nutrients ; 15(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242228

ABSTRACT

COVID-19-pandemic-related home confinement aids in limiting the spread of the virus but restricts exposure to sunlight, thereby possibly affecting 25(OH)D concentrations. This study aimed to investigate the effect of lockdown measures on 25(OH)D levels in outpatients visiting the healthcare centre over a period of two years. In this retrospective chart review, outpatients who visited a university healthcare centre for a health check-up over a period of two years were included. The patients' 25(OH)D serum levels and status were compared before, during, and after the lockdown periods. A total of 7234 patients were included in this study, with a mean age of 34.66 ± 16.78. The overall prevalence of 25(OH)D insufficiency, deficiency and sufficiency was 33.8%, 30.7% and 35.4%, respectively. The proportion of individuals with 25-(OH) D deficiency prior to lockdown was 29% and this proportion increased in the lockdown and post-lockdown periods to 31.1% and 32%, respectively. Although gender was less likely to have an impact on the 25 (OH) D level during the lockdown period (p = 0.630), we found an association between gender and 25 (OH) D status in the pre-lockdown and post-lockdown periods (p < 0.001 and p < 0.001, respectively). Another association between nationality and 25 (OH)D levels was found before, during and after the lockdown periods (p < 0.001). In addition, the youngest population, aged between 1 and 14, was strongly affected by the home confinement. Age had a positive and significant (p < 0.05) effect on 25 (OH) D status regardless of the different periods. Moreover, in the pre-lockdown period, male outpatients had 1.56 chance of having a sufficient level of 25 (OH)D. However, during the lockdown period, this chance decreased to 0.85 and then increased to 0.99 after the lockdown period. We found no statistically significant difference in the mean serum concentrations or in the prevalence of vitamin D insufficiency when we compared values from before, during and immediately after the COVID-19 lockdown period. However, there was a generally increased prevalence of vitamin D insufficiency in our study population. Another association between gender, nationality and age groups with 25(OH) D was found. Regular exposure to UVR is recommended for maintaining adequate vitamin D levels and to prevent vitamin D deficiency. Further research is needed to determine the best indications for vitamin D supplementation if confinement periods are extended and to consider the potential health consequences of prolonged confinement periods not only on vitamin D status but also on overall public health. The findings of this study may be considered by stakeholders for a targeted supplementation approach for risk groups.


Subject(s)
COVID-19 , Vitamin D Deficiency , Humans , Male , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Pandemics , Retrospective Studies , Universities , COVID-19/epidemiology , Communicable Disease Control , Vitamin D , Calcifediol , Vitamin D Deficiency/epidemiology , Vitamins , Risk Factors , Delivery of Health Care
7.
Front Psychol ; 14: 1121251, 2023.
Article in English | MEDLINE | ID: mdl-37063521

ABSTRACT

Background: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by motor and non-motor symptoms. The latter mainly include affective, sleep, and cognitive deficits. Non-demented PD patients often demonstrate impairments in several executive domains following neuropsychological evaluation. The current pilot study aims at assessing the discriminatory power of the Frontal Assessment Battery-15 (FAB15) in differentiating (i) non-demented PD patients and healthy controls and (ii) PD patients with more and less pronounced motor symptoms. Methods: Thirty-nine non-demented early-stage PD patients in the "on" dopamine state (26 females, mean age = 64.51 years, SD = 6.47, mean disease duration = 5.49 years, SD = 2.28) and 39 healthy participants (24 females, mean age = 62.60 years, SD = 5.51) were included in the study. All participants completed the FAB15. Motor symptoms of PD patients were quantified via the Unified Parkinson's Disease Rating Scale-Part III (UPDRS-Part III) and Hoehn and Yahr staging scale (H&Y). Results: The FAB15 score, adjusted according to normative data for sex, age, and education, proved to be sufficiently able to discriminate PD patients from healthy controls (AUC = 0.69 [95% CI 0.60-0.75], SE = 0.06, p = 0.04, optimal cutoff = 11.29). Conversely, the battery lacked sufficient discriminative capability to differentiate PD patients based on the severity of motor symptoms. Conclusion: The FAB15 may be a valid tool for distinguishing PD patients from healthy controls. However, it might be less sensitive in identifying clinical phenotypes characterized by visuospatial impairments resulting from posteroparietal and/or temporal dysfunctions. In line with previous evidence, the battery demonstrated to be not expendable in the clinical practice for monitoring the severity of PD-related motor symptoms.

8.
Molecules ; 28(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37110573

ABSTRACT

Microglia, the resident macrophage-like population in the central nervous system, play a crucial role in the pathogenesis of many neurodegenerative disorders by triggering an inflammatory response that leads to neuronal death. Neuroprotective compounds to treat or prevent neurodegenerative diseases are a new field of study in modern medicine. Microglia are activated in response to inflammatory stimuli. The pathogenesis of various neurodegenerative diseases is closely related to the constant activation of microglia due to their fundamental role as a mediator of inflammation in the brain environment. α-Tocopherol, also known as vitamin E, is reported to possess potent neuroprotective effects. The goal of this study was to investigate the biological effects of vitamin E on BV2 microglial cells, as a possible neuroprotective and anti-inflammatory agent, following stimulation with lipopolysaccharide (LPS). The results showed that the pre-incubation of microglia with α-tocopherol can guarantee neuroprotective effects during microglial activation induced by LPS. α-Tocopherol preserved the branched morphology typical of microglia in a physiological state. It also reduced the migratory capacity; the production of pro-inflammatory and anti-inflammatory cytokines such as TNF-α and IL-10; and the activation of receptors such as TRL4 and CD40, which modulate the PI3K-Akt signaling pathway. The results of this study require further insights and research, but they present new scenarios for the application of vitamin E as an antioxidant for the purpose of greater neuroprotection in vivo for the prevention of possible neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Humans , Lipopolysaccharides/pharmacology , Microglia , alpha-Tocopherol/pharmacology , alpha-Tocopherol/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Vitamin E/pharmacology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/prevention & control , Neurodegenerative Diseases/metabolism , Nitric Oxide/metabolism , NF-kappa B/metabolism
9.
Molecules ; 28(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36903663

ABSTRACT

Nutrients and their potential benefits are a new field of study in modern medicine due to their positive impact on health [...].


Subject(s)
Curcumin , Nutrients
10.
Cells ; 12(5)2023 02 21.
Article in English | MEDLINE | ID: mdl-36899817

ABSTRACT

Resveratrol is a polyphenol that acts as antioxidants do, protecting the body against diseases, such as diabetes, cancer, heart disease, and neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's diseases (PD). In the present study, we report that the treatment of activated microglia with resveratrol after prolonged exposure to lipopolysaccharide is not only able to modulate pro-inflammatory responses, but it also up-regulates the expression of decoy receptors, IL-1R2 and ACKR2 (atypical chemokine receptors), also known as negative regulatory receptors, which are able to reduce the functional responses promoting the resolution of inflammation. This result might constitute a hitherto unknown anti-inflammatory mechanism exerted by resveratrol on activated microglia.


Subject(s)
Lipopolysaccharides , Microglia , Resveratrol/metabolism , Lipopolysaccharides/metabolism , Microglia/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/metabolism
11.
Article in English | MEDLINE | ID: mdl-36833753

ABSTRACT

Knowledge about the mechanisms of transmission and the processing of nociceptive information, both in healthy and pathological states, has greatly expanded in recent years. This rapid progress is due to a multidisciplinary approach involving the simultaneous use of different branches of study, such as systems neurobiology, behavioral analysis, genetics, and cell and molecular techniques. This narrative review aims to clarify the mechanisms of transmission and the processing of pain while also taking into account the characteristics and properties of nociceptors and how the immune system influences pain perception. Moreover, several important aspects of this crucial theme of human life will be discussed. Nociceptor neurons and the immune system play a key role in pain and inflammation. The interactions between the immune system and nociceptors occur within peripheral sites of injury and the central nervous system. The modulation of nociceptor activity or chemical mediators may provide promising novel approaches to the treatment of pain and chronic inflammatory disease. The sensory nervous system is fundamental in the modulation of the host's protective response, and understanding its interactions is pivotal in the process of revealing new strategies for the treatment of pain.


Subject(s)
Nociceptors , Pain , Humans , Nociceptors/physiology , Immune System , Central Nervous System , Chronic Disease
12.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834515

ABSTRACT

The ketogenic diet (KD), a diet high in fat and protein but low in carbohydrates, is gaining much interest due to its positive effects, especially in neurodegenerative diseases. Beta-hydroxybutyrate (BHB), the major ketone body produced during the carbohydrate deprivation that occurs in KD, is assumed to have neuroprotective effects, although the molecular mechanisms responsible for these effects are still unclear. Microglial cell activation plays a key role in the development of neurodegenerative diseases, resulting in the production of several proinflammatory secondary metabolites. The following study aimed to investigate the mechanisms by which BHB determines the activation processes of BV2 microglial cells, such as polarization, cell migration and expression of pro- and anti-inflammatory cytokines, in the absence or in the presence of lipopolysaccharide (LPS) as a proinflammatory stimulus. The results showed that BHB has a neuroprotective effect in BV2 cells, inducing both microglial polarization towards an M2 anti-inflammatory phenotype and reducing migratory capacity following LPS stimulation. Furthermore, BHB significantly reduced expression levels of the proinflammatory cytokine IL-17 and increased levels of the anti-inflammatory cytokine IL-10. From this study, it can be concluded that BHB, and consequently the KD, has a fundamental role in neuroprotection and prevention in neurodegenerative diseases, presenting new therapeutic targets.


Subject(s)
Diet, Ketogenic , Neuroprotective Agents , Humans , 3-Hydroxybutyric Acid/pharmacology , Microglia/metabolism , Neuroinflammatory Diseases , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Neuroprotective Agents/pharmacology
13.
Molecules ; 28(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677800

ABSTRACT

Curcumin, a traditional Chinese medicine extracted from natural plant rhizomes, has become a candidate drug for the treatment of different diseases due to its anti-inflammatory, anticancer, antioxidant, and antibacterial activities. Curcumin is generally beneficial to improve human health with anti-inflammatory and antioxidative properties as well as antitumor and immunoregulatory properties. Inflammasomes are NLR family, pyrin domain-containing 3 (NLRP3) proteins that are activated in response to a variety of stress signals and that promote the proteolytic conversion of pro-interleukin-1ß and pro-interleukin-18 into active forms, which are central mediators of the inflammatory response; inflammasomes can also induce pyroptosis, a type of cell death. The NLRP3 protein is involved in a variety of inflammatory pathologies, including neurological and autoimmune disorders, lung diseases, atherosclerosis, myocardial infarction, and many others. Different functional foods may have preventive and therapeutic effects in a wide range of pathologies in which inflammasome proteins are activated. In this review, we have focused on curcumin and evidenced its therapeutic potential in inflammatory diseases such as neurodegenerative diseases, respiratory diseases, and arthritis by acting on the inflammasome.


Subject(s)
Curcumin , Inflammasomes , Humans , Inflammasomes/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants , Interleukin-1beta/metabolism
15.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361750

ABSTRACT

In recent years, there has been considerable research showing that coffee consumption seems to be beneficial to human health, as it contains a mixture of different bioactive compounds such as chlorogenic acids, caffeic acid, alkaloids, diterpenes and polyphenols. Neurodegenerative diseases (NDs) are debilitating, and non-curable diseases associated with impaired central, peripheral and muscle nervous systems. Several studies demonstrate that neuroinflammation mediated by glial cells-such as microglia and astrocytes-is a critical factor contributing to neurodegeneration that causes the dysfunction of brain homeostasis, resulting in a progressive loss of structure, function, and number of neuronal cells. This happens over time and leads to brain damage and physical impairment. The most known chronic NDs are represented by Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). According to epidemiological studies, regular coffee consumption is associated with a lower risk of neurodegenerative diseases. In this review, we summarize the latest research about the potential effects of caffeine in neurodegenerative disorders prevention and discuss the role of controlled caffeine delivery systems in maintaining high plasma caffeine concentrations for an extended time.


Subject(s)
Neurodegenerative Diseases , Humans , Caffeine/pharmacology , Coffee , Neurodegenerative Diseases/etiology , Neuroinflammatory Diseases
16.
Biology (Basel) ; 11(10)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36290330

ABSTRACT

Extracellular vesicles (EVs) represent a heterogeneous group of membranous structures derived from cells that are released by all cell types, including brain cells. EVs are now thought to be an additional mechanism of intercellular communication. Both under normal circumstances and following the addition of proinflammatory stimuli, microglia release EVs, but the contents of these two types of EVs are different. Microglia are considered the brain-resident immune cells that are involved in immune surveillance and inflammatory responses in the central nervous system. In this research, we have analyzed the effects of EVs isolated from microglia in response to LPS (Lipopolysaccharide) on microglia activation. The EVs produced as result of LPS stimulation, knows as EVs-LPS, were then used as stimuli on microglia BV2 resting cells in order to investigate their ability to induce microglia to polarize towards an inflammatory state. After EVs-LPS stimulation, we analyzed the change to BV2 cells' morphology, proliferation, and migration, and investigated the expression and the release of pro-inflammatory cytokines. The encouraging findings of this study showed that EVs-LPS can activate microglia in a manner similar to that of LPS alone and that EVs derived from control cells cannot polarize microglia towards a pro-inflammatory state. This study has confirmed the critical role of EVs in communication and shown how EVs produced in an inflammatory environment can exacerbate the inflammatory process by activating microglia, which may have an impact on all brain cells.

17.
Biomolecules ; 12(8)2022 08 14.
Article in English | MEDLINE | ID: mdl-36009012

ABSTRACT

Several studies suggest that different combinations of nutraceutical supplements may improve the lipid profile, representing a viable alternative to statins. However, their effects on individuals with myopathy need to be investigated. The aim of our study was to explore the mid- and long-term physiological effects of monacolin k (5 mg) and astaxanthin (0.1 mg) supplements in association with a low-energy/fat diet in a group of subjects with mild myopathy. Eighty subjects (44 women) took part in this observational study. Participants were assigned to the experimental group (EG, n = 40, 24 women) treated with a low-energy/fat diet (1200-1500 Kcal/day and 15-20% lipids) in combination with monacolin k (5 mg) and astaxanthin (0.1 mg) supplementation, and to the control group (CG, n = 40, 20 women) treated only with a low-energy/fat diet (1200-1500 Kcal/day and 15-20% lipids). BMI and biochemical parameters (blood glucose, total cholesterol, HDL, LDL, triglycerides, C-reactive protein (CRP) and creatine phosphokinase-CPK) were collected at baseline (T0), after 12 (T1) and 24 (T2) weeks. A mixed factorial ANOVA was performed to determine if there were significant main effects and/or interactions between time and treatment. Treatment (EG vs. CG) was entered as the between-subjects factor and time (T0 vs. T1 vs. T2) as the within-subject factor. We found a significant improvement in total cholesterol, HDL, LDL, PCR and CPK parameters in EG compared with CG. Our results highlight the efficacy and safety of combined use of monacolin k (5 mg) and astaxanthin (0.1 mg) in combination with a low-energy/fat diet in the treatment of dyslipidemia.


Subject(s)
Lovastatin , Muscular Diseases , Cholesterol, HDL , Diet , Dietary Supplements , Female , Homeostasis , Humans , Lipids , Muscular Diseases/drug therapy , Xanthophylls
19.
Life (Basel) ; 12(6)2022 May 25.
Article in English | MEDLINE | ID: mdl-35743815

ABSTRACT

Lung cancer is the most lethal cancer: it has a significant incidence and low survival rates. Lifestyle has an important influence on cancer onset and its progression, indeed environmental factors and smoke are involved in cancer establishment, and in lung cancer. Physical activity is a determinant in inhibiting or slowing lung cancer. Certainly, the inflammation is a major factor responsible for lung cancer establishment. In this scenario, regular physical activity can induce anti-inflammatory effects, reducing ROS production and stimulating immune cell system activity. On lung function, physical activity improves lung muscle strength, FEV1 and forced vital capacity. In lung cancer patients, it reduces dyspnea, fatigue and pain. Data in the literature has shown the effects of physical activity both in in vivo and in vitro studies, reporting that its anti-inflammatory action is determinant in the onset of human diseases such as lung cancer. It has a beneficial effect not only in the prevention of lung cancer, but also on treatment and prognosis. For these reasons, it is retained as an adjuvant in lung cancer treatment both for the administration and prognosis of this type of cancer. The purpose of this review is to analyze the role of physical activity in lung cancer and to recommend regular physical activity and lifestyle changes to prevent or treat this pathology.

20.
Brain Sci ; 12(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35741662

ABSTRACT

BACKGROUND: Recent evidence suggests that a higher body weight may be linked to cognitive impairment in different domains involving executive/frontal functioning. However, challenging results are also available. Accordingly, our study was designed to verify whether (i) poor executive functions are related to a higher body weight and (ii) executive functioning could contribute to weight loss in treatment-seeking overweight and obese patients. METHODS: We examined general executive functioning, inhibitory control, verbal fluency, and psychomotor speed in a sample including 104 overweight and obese patients. Forty-eight normal-weight subjects participated in the study as controls. RESULTS: Univariate Analysis of Variance showed that obese patients obtained lower scores than overweight and normal-weight subjects in all executive measures, except for errors in the Stroop test. However, when sociodemographic variables entered the model as covariates, no between-group difference was detected. Furthermore, an adjusted multiple linear regression model highlighted no relationship between weight loss and executive scores at baseline. CONCLUSIONS: Our results provide further evidence for the lack of association between obesity and the executive domains investigated. Conflicting findings from previous literature may likely be due to the unchecked confounding effects exerted by sociodemographic variables and inclusion/exclusion criteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...