Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Immunohorizons ; 6(6): 366-372, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732333

ABSTRACT

Resident tissue macrophages (RTMs) develop from distinct waves of embryonic progenitor cells that seed tissues before birth. Tissue-specific signals drive a differentiation program that leads to the functional specialization of RTM subsets. Genetic programs that regulate the development of RTMs are incompletely understood, as are the mechanisms that enable their maintenance in adulthood. In this study, we show that the ligand-activated nuclear hormone receptor, retinoid X receptor (RXR)α, is a key regulator of murine RTM development. Deletion of RXRα in hematopoietic precursors severely curtailed RTM populations in adult tissues, including the spleen, peritoneal cavity, lung, and liver. The deficiency could be traced to the embryonic period, and mice lacking RXRα in hematopoietic lineages had greatly reduced numbers of yolk sac and fetal liver macrophages, a paucity that persisted into the immediate postnatal period.


Subject(s)
Macrophages , Yolk Sac , Animals , Cell Differentiation/physiology , Liver , Mice , Spleen
2.
Proc Natl Acad Sci U S A ; 117(5): 2570-2578, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31964813

ABSTRACT

The thymus generates cells of the T cell lineage that seed the lymphatic and blood systems. Transcription factor regulatory networks control the lineage programming and maturation of thymic precursor cells. Whether extrathymic antigenic events, such as the microbial colonization of the mucosal tract also shape the thymic T cell repertoire is unclear. We show here that intestinal microbes influence the thymic homeostasis of PLZF-expressing cells in early life. Impaired thymic development of PLZF+ innate lymphocytes in germ-free (GF) neonatal mice is restored by colonization with a human commensal, Bacteroides fragilis, but not with a polysaccharide A (PSA) deficient isogenic strain. Plasmacytoid dendritic cells influenced by microbes migrate from the colon to the thymus in early life to regulate PLZF+ cell homeostasis. Importantly, perturbations in thymic PLZF+ cells brought about by alterations in early gut microbiota persist into adulthood and are associated with increased susceptibility to experimental colitis. Our studies identify a pathway of communication between intestinal microbes and thymic lymphocytes in the neonatal period that can modulate host susceptibility to immune-mediated diseases later in life.


Subject(s)
Gastrointestinal Microbiome , Lymphocytes/immunology , Thymus Gland/growth & development , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteroides fragilis/physiology , Cell Differentiation , Colitis/genetics , Colitis/immunology , Colitis/microbiology , Colon/microbiology , Humans , Lymphocytes/cytology , Mice , Mice, Inbred C57BL , Promyelocytic Leukemia Zinc Finger Protein/genetics , Promyelocytic Leukemia Zinc Finger Protein/immunology , Thymus Gland/cytology , Thymus Gland/immunology
3.
Mol Ther ; 28(2): 367-381, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31784416

ABSTRACT

Adeno-associated virus (AAV) is a highly promising gene transfer vector, yet major cellular requirements for AAV entry are poorly understood. Using a genome-wide CRISPR screen for entry of evolutionarily divergent serotype AAVrh32.33, we identified GPR108, a member of the G protein-coupled receptor superfamily, as an AAV entry factor. Of greater than 20 divergent AAVs across all AAV clades tested in human cell lines, only AAV5 transduction was unaffected in the GPR108 knockout (KO). GPR108 dependency was further shown in murine and primary cells in vitro. These findings are further validated in vivo, as the Gpr108 KO mouse demonstrates 10- to 100-fold reduced expression for AAV8 and rh32.33 but not AAV5. Mechanistically, both GPR108 N- and C-terminal domains are required for transduction, and on the capsid, a VP1 unique domain that is not conserved on AAV5 can be transferred to confer GPR108 independence onto AAV2 chimeras. In vitro binding and fractionation studies indicate reduced nuclear import and cytosolic accumulation in the absence of GPR108. We thus have identified the second of two AAV entry factors that is conserved between mice and humans relevant both in vitro and in vivo, further providing a mechanistic understanding to the tropism of AAV gene therapy vectors.


Subject(s)
Conserved Sequence , Dependovirus/genetics , Genetic Vectors/genetics , Amino Acid Motifs , Animals , CRISPR-Cas Systems , Capsid Proteins/chemistry , Capsid Proteins/genetics , Dependovirus/classification , Evolution, Molecular , Gene Transfer Techniques , Genetic Engineering , Genetic Therapy , Genome, Viral , Golgi Apparatus/metabolism , Humans , Phylogeny , Protein Interaction Domains and Motifs
4.
J Vis Exp ; (138)2018 08 10.
Article in English | MEDLINE | ID: mdl-30148489

ABSTRACT

Enteric bacterial communities are established early in life and influence immune cell development and function. The neonatal microbiota is susceptible to numerous external influences including antibiotics use and diet, which impacts susceptibility to autoimmune and inflammatory diseases. Disorders such as Inflammatory Bowel Disease (IBD) are characterized by a massive influx of immune cells to the intestines. However, immune cells conditioned by the microbiota may additionally emigrate out of the intestines to influence immune responses at extra-intestinal sites. Thus, there is a need to identify and characterize cells that may carry microbial messages from the intestines to distal sites. Here, we describe a method to label cells in the colon of newborn mice in vivo that enables their identification at extra-intestinal sites after migration.


Subject(s)
Colon/cytology , Hematopoiesis/genetics , Animals , Colon/metabolism , Humans , Infant, Newborn , Mice
5.
Brain Inj ; 31(10): 1376-1381, 2017.
Article in English | MEDLINE | ID: mdl-28627942

ABSTRACT

PRIMARY OBJECTIVE: There is a need to understand pathologic processes of the brain following mild traumatic brain injury (mTBI). Previous studies report axonal injury and oedema in the first week after injury in a rodent model. This study aims to investigate the processes occurring 1 week after injury at the time of regeneration and degeneration using diffusion tensor imaging (DTI) in the impact acceleration rat mTBI model. RESEARCH DESIGN: Eighteen rats were subjected to impact acceleration injury, and three rats served as sham controls. Seven days post injury, DTI was acquired from fixed rat brains using a 7T scanner. Group comparison of Fractional Anisotropy (FA) values between traumatized and sham animals was performed using Tract-Based Spatial Statistics (TBSS), a method that we adapted for rats. MAIN OUTCOMES AND RESULTS: TBSS revealed white matter regions of the brain with increased FA values in the traumatized versus sham rats, localized mainly to the contrecoup region. Regions of increased FA included the pyramidal tract, the cerebral peduncle, the superior cerebellar peduncle and to a lesser extent the fibre tracts of the corpus callosum, the anterior commissure, the fimbria of the hippocampus, the fornix, the medial forebrain bundle and the optic chiasm. CONCLUSION: Seven days post injury, during the period of tissue reparation in the impact acceleration rat model of mTBI, microstructural changes to white matter can be detected using DTI.


Subject(s)
Brain Concussion/diagnostic imaging , Diffusion Tensor Imaging , Nerve Regeneration/physiology , White Matter/diagnostic imaging , Animals , Anisotropy , Male , Models, Animal , Pilot Projects , Rats , Rats, Sprague-Dawley
6.
J Lipid Res ; 54(10): 2623-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23690505

ABSTRACT

The interaction of dietary fats and carbohydrates on liver mitochondria were examined in male FBNF1 rats fed 20 different low-fat isocaloric diets. Animal growth rates and mitochondrial respiratory parameters were essentially unaffected, but mass spectrometry-based mitochondrial lipidomics profiling revealed increased levels of cardiolipins (CLs), a family of phospholipids essential for mitochondrial structure and function, in rats fed saturated or trans fat-based diets with a high glycemic index. These mitochondria showed elevated monolysocardiolipins (a CL precursor/product of CL degradation), elevated ratio of trans-phosphocholine (PC) (18:1/18:1) to cis-PC (18:1/18:1) (a marker of thiyl radical stress), and decreased ubiquinone Q9; the latter two of which imply a low-grade mitochondrial redox abnormality. Extended analysis demonstrated: i) dietary fats and, to a lesser extent, carbohydrates induce changes in the relative abundance of specific CL species; ii) fatty acid (FA) incorporation into mature CLs undergoes both positive (>400-fold) and negative (2.5-fold) regulation; and iii) dietary lipid abundance and incorporation of FAs into both the CL pool and specific mature tetra-acyl CLs are inversely related, suggesting previously unobserved compensatory regulation. This study reveals previously unobserved complexity/regulation of the central lipid in mitochondrial metabolism.


Subject(s)
Cardiolipins/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Mitochondria, Liver/metabolism , Animals , Cell Respiration , Diet , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-6/administration & dosage , Glycemic Index , Liver/metabolism , Male , Oxidative Stress , Oxygen Consumption , Rats , Ubiquinone/metabolism
7.
J Lipids ; 2012: 797105, 2012.
Article in English | MEDLINE | ID: mdl-22970378

ABSTRACT

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) block apoptotic neuronal cell death and are strongly neuroprotective in acute and chronic neurodegeneration. Theoretical considerations, indirect data, and consideration of parsimony lead to the hypothesis that modulation of mitochondrial pathway(s) underlies at least some of the neuroprotective effects of n-3 PUFAs. We therefore systematically tested this hypothesis on healthy male FBFN1 rats fed for four weeks with isocaloric, 10% fat-containing diets supplemented with 1, 3, or 10% fish oil (FO). High resolution mass spectrometric analysis confirmed expected diet-driven increases in docosahexaenoic acid (DHA, 22:6, n-3) and eicosapentaenoic acid (EPA, 20:5, n-3) in sera, liver and nonsynaptosomal brain mitochondria. We further evaluated the resistance of brain and liver mitochondria to Ca(2+) overload and prooxidants. Under these conditions, neither mitochondrial resistance to Ca(2+) overload and prooxidants nor mitochondrial physiology is altered by diet, despite the expected incorporation of DHA and EPA in mitochondrial membranes and plasma. Collectively, the data eliminate one of the previously proposed mechanism(s) that n-3 PUFA induced augmentation of mitochondrial resistance to the oxidant/calcium-driven dysfunction. These data furthermore allow us to define a specific series of follow-up experiments to test related hypotheses about the effect of n-3 PUFAs on brain mitochondria.

SELECTION OF CITATIONS
SEARCH DETAIL
...