Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
J Med Chem ; 64(12): 8076-8100, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34081466

ABSTRACT

The beta-site APP cleaving enzyme 1, known as BACE1, has been a widely pursued Alzheimer's disease drug target owing to its critical role in the production of amyloid-beta. We have previously reported the clinical development of LY2811376 and LY2886721. LY2811376 advanced to Phase I before development was terminated due to nonclinical retinal toxicity. LY2886721 advanced to Phase II, but development was halted due to abnormally elevated liver enzymes. Herein, we report the discovery and clinical development of LY3202626, a highly potent, CNS-penetrant, and low-dose BACE inhibitor, which successfully addressed these key development challenges.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Heterocyclic Compounds, 2-Ring/pharmacology , Protease Inhibitors/pharmacology , Pyrazines/pharmacology , Pyrroles/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Blood-Brain Barrier/physiology , Brain/metabolism , Crystallography, X-Ray , Dogs , Drug Stability , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Humans , Madin Darby Canine Kidney Cells , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacokinetics , Protein Binding , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Pyrroles/chemical synthesis , Pyrroles/pharmacokinetics , Rats , Structure-Activity Relationship
2.
Bioorg Med Chem ; 28(1): 115194, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31786008

ABSTRACT

Inhibition of BACE1 has become an important strategy in the quest for disease modifying agents to slow the progression of Alzheimer's disease. We previously reported the fragment-based discovery of LY2811376, the first BACE1 inhibitor reported to demonstrate robust reduction of human CSF Aß in a Phase I clinical trial. We also reported on the discovery of LY2886721, a potent BACE1 inhibitor that reached phase 2 clinical trials. Herein we describe the preparation and structure activity relationships (SAR) of a series of BACE1 inhibitors utilizing trans-cyclopropyl moieties as conformational constraints. The design, details of the stereochemically complex organic synthesis, and biological activity of these BACE1 inhibitors is described.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Cyclopropanes/pharmacology , Protease Inhibitors/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Crystallography, X-Ray , Cyclopropanes/chemical synthesis , Cyclopropanes/chemistry , Dose-Response Relationship, Drug , Humans , Ligands , Models, Molecular , Molecular Conformation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
3.
CNS Neurol Disord Drug Targets ; 16(10): 1099-1110, 2017.
Article in English | MEDLINE | ID: mdl-29090671

ABSTRACT

BACKGROUND & OBJECTIVE: 6-[(1S)-1-[1-[5-(2-hydroxyethoxy)-2-pyridyl]pyrazol-3-yl]ethyl]- 3H-1,3-benzothiazol-2-one (LY3130481 or CERC-611) is a selective antagonist of AMPA receptors containing transmembrane AMPA receptor regulatory protein (TARP) γ-8 that is under development for epilepsy. The present study provided a broad inquiry into its anticonvulsant properties. LY3130481 was anticonvulsant in multiple acute seizure provocation models in mice and rats. In addition, LY3130481 was effective against absence seizures in the GAERS genetic model and in the Frings mouse model. Likewise, LY3130481 attenuated convulsions in mice and rats with long-term induction of seizures (e.g., corneal, pentylenetetrazole, hippocampal, and amygdala kindled seizures). In slices of epileptic human cortex, LY3130481 significantly decreased neuronal firing frequencies. LY3130481 displaced from rat brain a radioligand specific for AMPA receptors associated with TARP γ-8 whereas non-TARP-selective molecules did not. Binding was also observed in hippocampus freshly transected from a patient. RESULTS & CONCLUSION: Taken as a whole, the findings reported here establish the broad anticonvulsant efficacy of LY3130481 indicating that blockade of AMPA receptors associated with TARP γ-8 is sufficient for these protective effects.


Subject(s)
Benzothiazoles/pharmacology , Calcium Channels/metabolism , Pyrazoles/pharmacology , Receptors, AMPA/antagonists & inhibitors , Seizures/prevention & control , Animals , Anticonvulsants/pharmacology , Cerebral Cortex/physiology , Disease Models, Animal , Female , Humans , Male , Mice , Neurons/physiology , Radioligand Assay , Rats
4.
Neuropharmacology ; 126: 257-270, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28757050

ABSTRACT

6-[(1S)-1-[1-[5-(2-hydroxyethoxy)-2-pyridyl]pyrazol-3-yl]ethyl]-3H-1,3-benzothiazol-2-one (LY3130481 or CERC-611) is a selective antagonist of AMPA receptors containing transmembrane AMPA receptor regulatory protein (TARP) γ-8. This molecule has been characterized as a potent and efficacious anticonvulsant in an array of acute and chronic epilepsy models in rodents. The present set of experiments was designed to assess the effects of LY3130481 on the electroencephelogram (EEG), cognitive function, and neurochemical outflow. LY3130481 disrupted food-maintained responding in rats and spontaneous alternation in a Y-maze in mice. In rat fear conditioning, LY3130481 caused a deficit in trace (hippocampal-dependent), but not in delay fear conditioning. Although these effects on cognitive performances were observed, the known cognitive-impairing anticonvulsant, topiramate, did not always produce deficits under these assay conditions. LY3130481 produced modest increases in wake times in rats. In addition, LY3130481 was able to attenuate some impairing effects of standard antiepileptic drugs. The motor-impairing effects of the lacosamide were attenuated by LY3130481 as was the decrease in non-rapid-eye movement sleep induced by carbamazepine. Evaluation of the effect of LY3130481 on neurotransmitter and metabolite efflux in the rat medial prefrontal cortex, using in vivo microdialysis, revealed significant increases in the pro-cognitive and wake-promoting neurotransmitters, histamine and acetylcholine, as well as in serotonin, telemethylhistamine, 5-HIAA, HVA and MHPG. LY3130481 thus presents a novel behavioral profile that will have to be evaluated in patients to fully appreciate its implications for therapeutics. LY3130481 is currently under clinical development as CERC-611 as an antiepileptic.


Subject(s)
Anticonvulsants/administration & dosage , Benzothiazoles/administration & dosage , Calcium Channels/physiology , Cognition/drug effects , Prefrontal Cortex/drug effects , Pyrazoles/administration & dosage , Acetylcholine/metabolism , Animals , Behavior, Animal/drug effects , Conditioning, Classical/drug effects , Electroencephalography , Fear/drug effects , Fructose/administration & dosage , Fructose/analogs & derivatives , Histamine/metabolism , Male , Maze Learning/drug effects , Nitriles , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Pyridones/administration & dosage , Rats, Sprague-Dawley , Rats, Wistar , Serotonin/metabolism , Sleep Stages/drug effects , Topiramate
5.
Nat Med ; 22(12): 1496-1501, 2016 12.
Article in English | MEDLINE | ID: mdl-27820603

ABSTRACT

Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.


Subject(s)
Anticonvulsants/pharmacology , Benzothiazoles/pharmacology , Cerebellum/drug effects , Epilepsy/drug therapy , Prosencephalon/drug effects , Pyrazoles/pharmacology , Pyridones/pharmacology , Receptors, AMPA/antagonists & inhibitors , Animals , Anticonvulsants/adverse effects , Calcium Channels/metabolism , Cerebellum/metabolism , Convulsants/toxicity , Disease Models, Animal , Dizziness/chemically induced , Epilepsy/chemically induced , Mice , Nitriles , Pentylenetetrazole/toxicity , Prosencephalon/metabolism , Pyridones/adverse effects , Rats , Receptors, AMPA/metabolism , Seizures/chemically induced , Seizures/drug therapy
6.
J Med Chem ; 59(10): 4753-68, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27067148

ABSTRACT

Transmembrane AMPA receptor regulatory proteins (TARPs) are a family of scaffolding proteins that regulate AMPA receptor trafficking and function. TARP γ-8 is one member of this family and is highly expressed within the hippocampus relative to the cerebellum. A selective TARP γ-8-dependent AMPA receptor antagonist (TDAA) is an innovative approach to modulate AMPA receptors in specific brain regions to potentially increase the therapeutic index relative to known non-TARP-dependent AMPA antagonists. We describe here, for the first time, the discovery of a noncompetitive AMPA receptor antagonist that is dependent on the presence of TARP γ-8. Three major iteration cycles were employed to improve upon potency, CYP1A2-dependent challenges, and in vivo clearance. An optimized molecule, compound (-)-25 (LY3130481), was fully protective against pentylenetetrazole-induced convulsions in rats without the motor impairment associated with non-TARP-dependent AMPA receptor antagonists. Compound (-)-25 could be utilized to provide proof of concept for antiepileptic efficacy with reduced motor side effects in patients.


Subject(s)
Calcium Channels/metabolism , Drug Discovery , Receptors, AMPA/antagonists & inhibitors , High-Throughput Screening Assays , Humans , Molecular Docking Simulation , Molecular Structure , Receptors, AMPA/metabolism
7.
Neuropharmacology ; 55(5): 743-54, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18602930

ABSTRACT

Selective inhibitors of the glycine transporter 1 (GlyT1) have been implicated in central nervous system disorders related to hypoglutamatergic function such as schizophrenia. The selective GlyT1 inhibitors ALX5407 (NFPS) and LY2365109 {[2-(4-benzo[1,3]dioxol-5-yl-2-tert-butylphenoxy)ethyl]-methylamino}-acetic acid increased cerebrospinal fluid levels of glycine and potentiated NMDA-induced increases in dialysate levels of neurotransmitters in the prefrontal cortex (PFC) and the striatum. However, higher doses produced both stimulatory and inhibitory effects on motor performance and impaired respiration, suggesting significant involvement of cerebellar and brain stem areas. A dual probe microdialysis study showed that ALX5407 transiently elevated extracellular levels of glycine in the PFC with more sustained increases in the cerebellum. In support of these findings, immuno-staining with pan-GlyT1 and GlyT1a antibodies showed a higher abundance of immunoreactivity in the brain stem/cerebellum as compared to the frontal cortical/hippocampal brain areas in four different species studied, including the mouse, rat, monkey and human. In addition, the inhibitory effects of ALX5407 on cerebellar levels of cGMP in the mouse could be reversed by the glycine A receptor antagonist strychnine but not the glycine B receptor antagonist L-701324. We propose that the adverse events seen with higher doses of ALX5407 and LY2365109 are the result of high GlyT1 inhibitory activity in caudal areas of the brain with sustained elevations of extracellular glycine. High levels of glycine in these brain areas may result in activation of strychnine-sensitive glycine A receptors that are inhibitory on both motor activity and critical brain stem functions such as respiration.


Subject(s)
Behavior, Animal/drug effects , Brain Chemistry/drug effects , Cerebral Cortex/drug effects , Corpus Striatum/drug effects , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Sarcosine/analogs & derivatives , Animals , Cell Line, Tumor , Cyclic GMP/metabolism , Dioxoles/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Glycine/metabolism , Humans , Male , Mice , Microdialysis/methods , Motor Activity/drug effects , Neuroblastoma , Neurotransmitter Agents/metabolism , Quinolones/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sarcosine/pharmacology , Time Factors
8.
Bioorg Med Chem Lett ; 17(18): 5233-8, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17629697

ABSTRACT

Inhibition of the glycine transporter GlyT1 is a potential strategy for the treatment of schizophrenia. A novel series of GlyT1 inhibitors and their structure-activity relationships (SAR) are described. Members of this series are highly potent and selective transport inhibitors which are shown to elevate glycine levels in cerebrospinal fluid.


Subject(s)
Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Glycine Plasma Membrane Transport Proteins/metabolism , Rats , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 15(4): 899-903, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15686883

ABSTRACT

Many 3-aryl-4-(1,2,3,4-tetrahydro[1,4]diazepino[6,7,1-hi]indol-7-yl)maleimides exhibit potent GSK3 inhibitory activity (<100 nM IC(50)), although few show significant selectivity (>100x) versus CDK2, CDK4, or PKCbetaII. However, combining 3-(imidazo[1,2-a]pyridin-3-yl), 3-(pyrazolo[1,5-a]pyridin-3-yl) or aza-analogs with a 4-(2-acyl-(1,2,3,4-tetrahydro[1,4]diazepino[6,7,1-hi]indol-7-yl)) group on the maleimide resulted in very potent inhibitors of GSK3 (160 to >10,000-fold selectivity versus CDK2/4 and PKCbetaII. These compounds also inhibited tau phosphorylation in cells and were effective in lowering plasma glucose in a rat model of type 2 diabetes (ZDF rat).


Subject(s)
Glycogen Synthase Kinase 3/antagonists & inhibitors , Maleimides/chemical synthesis , Animals , Blood Glucose/drug effects , Cell Line , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Humans , Inhibitory Concentration 50 , Maleimides/pharmacology , Phosphorylation/drug effects , Rats , Structure-Activity Relationship , tau Proteins/metabolism
10.
Emerg Med Serv ; 34(12): 233, 250, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16435685
11.
JEMS ; 29(11): 20, 22; discussion 22, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15599954
12.
J Med Chem ; 47(16): 3934-7, 2004 Jul 29.
Article in English | MEDLINE | ID: mdl-15267232

ABSTRACT

Glycogen synthase kinase-3 (GSK3) is involved in signaling from the insulin receptor. Inhibitors of GSK3 are expected to effect lowering of plasma glucose similar to insulin, making GSK3 an attractive target for the treatment of type 2 diabetes. Herein we report the discovery of a series of potent and selective GSK3 inhibitors. Compounds 7-12 show oral activity in an in vivo model of type II diabetes, and 9 and 12 have desirable PK properties.


Subject(s)
Glycogen Synthase Kinase 3/antagonists & inhibitors , Imidazoles/chemical synthesis , Pyridines/chemical synthesis , Pyrroles/chemical synthesis , Administration, Oral , Animals , Diabetes Mellitus, Type 2/drug therapy , Female , Glycogen Synthase Kinase 3 beta , Humans , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Rats, Zucker
14.
Emerg Med Serv ; 33(6): 126, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15216602

ABSTRACT

As EMS professionals, you influence others every day by your actions, knowledge and the way you communicate. You lead teams in critical moments in people's lives; you make a difference. Your attitude, the manner and effect of your communication and your actions will determine whether you will influence people and become a true leader. Become a better paramedic/EMT and leader by ensuring that your influence on others is positive rather than negative. No matter who you are or your position, start today to build your team, put others first and follow your vision.


Subject(s)
Emergency Medical Services/organization & administration , Leadership , Attitude of Health Personnel , Communication , Humans , United States
SELECTION OF CITATIONS
SEARCH DETAIL