Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37238009

ABSTRACT

The purpose of this study was to determine the link between insulin-like growth factor 1 (IGF-1), progesterone (PROG), non-esterified fatty acids (NEFAs), ß-hydroxybutyrate (BHB), and glucose (GLU) and pregnancy probability after the first artificial insemination (AI) and during the first 100 days in milk (DIM), during the critical transition period. We determined levels of serum IGF-1, PROG, NEFA, BHB, and GLU in Holstein dairy cows via ELISA, using blood samples collected 7 days before parturition (DAP) until 21 days postparturition (DPP). The group was split into cows diagnosed pregnant at 100 DIM (PREG) and those that did not conceive at 100 and 150 DIM (NPREG). Serum IGF-1 and PROG median levels at 7 DAP were significantly higher in PREG vs. NPREG (p = 0.029), the only statistically significant differences across the subgroups. At 7 DAP, IGF-1 levels within the initial group showed a strong negative correlation with PROG (r = -0.693; p = 0.006), while for the PREG subgroup, the IGF-1 levels exhibited a very strong positive correlation with GLU (r = 0.860; p = 0.011) and NEFA (r = 0.872; p = 0.013). IGF-1 and PROG levels detected at 7 DAP may be useful to predict pregnancy at 100 DIM. The positive correlation of NEFA and GLU levels during the transition period demonstrates that the initial group is not in NEB; thus, the NEFA level was not a decisive factor for reproduction success.

2.
Front Vet Sci ; 10: 1347482, 2023.
Article in English | MEDLINE | ID: mdl-38269362

ABSTRACT

Male infertility is frequently caused by idiopathic or unexplained reasons, resulting in an increase in demand for assisted reproductive technologies. In buffaloes, more than in other animals due to reproductive hardiness, successful fertilization needs spermatozoa to effectively transit the female reproductive system to reach the oocyte. This mechanism naturally picks high-quality sperm cells for conception, but when artificial reproductive technologies such as in vitro fertilization, intracytoplasmic sperm injection, or intrauterine insemination are utilized, alternative techniques of sperm selection are necessary. Currently, technology allows for sperm sorting based on motility, maturity, the lack of apoptotic components, proper morphology, and even sex. This study provides current knowledge on all known techniques of sperm cell sorting in buffaloes, evaluates their efficiency, and discusses the benefits and drawbacks of each approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...