Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Type of study
Publication year range
1.
Plant Biol (Stuttg) ; 22(1): 30-37, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31368234

ABSTRACT

Most aluminium (Al)-accumulating species are found on soils with high Al saturation and low Ca availability (Ca poor). Callisthene fasciculata Mart. (Vochysiaceae), however, is an Al-accumulating tree restricted to Ca-rich soils with low Al saturation in the Brazilian Cerrado savanna. Here we tested its calcicole behaviour, and the possible role of organic acids in detoxification of Al during the early stages of plant development. We assessed growth, dry mass, nutrients, Al and organic acids in seedlings grown for 50 days on two contrasting Cerrado soils; one with high Ca concentrations and low Al saturation and the other with low Ca availability and high Al saturation. Relative to plants on Ca-rich soil, plants on Ca-poor soil had necrotic spots and bronzing of leaves. Roots and shoots contained reduced concentrations of P and Cu, but higher concentrations of Fe, Al and citrate. Despite lower concentrations in the soil, Ca and Mg increased in shoots. Shoot concentrations of oxalate were also higher. We confirmed C. fasciculata as an Al-accumulating species with calcicole behaviour. The increased concentrations of organic acids in plants with higher Al accumulation suggest that high availability of soluble Al does not prevent occurrence of this species on soils with high Al saturation. Instead, the absence of C. fasciculata from Ca-poor soils is probably due to imbalances in tissue Fe, Cu and Zn imposed by this soil type.


Subject(s)
Aluminum , Myrtales , Soil Pollutants , Aluminum/metabolism , Aluminum/toxicity , Brazil , Myrtales/drug effects , Myrtales/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/metabolism , Soil/chemistry , Soil Pollutants/toxicity
2.
Sci Total Environ ; 616-617: 1101-1123, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29132720

ABSTRACT

The rapid increase of the world population constantly demands more food production from agricultural soils. This causes conflicts, since at the same time strong interest arises on novel bio-based products from agriculture, and new perspectives for rural landscapes with their valuable ecosystem services. Agriculture is in transition to fulfill these demands. In many countries, conventional farming, influenced by post-war food requirements, has largely been transformed into integrated and sustainable farming. However, since it is estimated that agricultural production systems will have to produce food for a global population that might amount to 9.1 billion by 2050 and over 10 billion by the end of the century, we will require an even smarter use of the available land, including fallow and derelict sites. One of the biggest challenges is to reverse non-sustainable management and land degradation. Innovative technologies and principles have to be applied to characterize marginal lands, explore options for remediation and re-establish productivity. With view to the heterogeneity of agricultural lands, it is more than logical to apply specific crop management and production practices according to soil conditions. Cross-fertilizing with conservation agriculture, such a novel approach will provide (1) increased resource use efficiency by producing more with less (ensuring food security), (2) improved product quality, (3) ameliorated nutritional status in food and feed products, (4) increased sustainability, (5) product traceability and (6) minimized negative environmental impacts notably on biodiversity and ecological functions. A sustainable strategy for future agriculture should concentrate on production of food and fodder, before utilizing bulk fractions for emerging bio-based products and convert residual stage products to compost, biochar and bioenergy. The present position paper discusses recent developments to indicate how to unlock the potentials of marginal land.

3.
Plant Cell Rep ; 32(8): 1243-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23539290

ABSTRACT

KEY MESSAGE: Sensitivity to Erysiphe in Noccaea praecox with low metal supply is related to the failure in enhancing SA. Cadmium protects against fungal-infection by direct toxicity and/or enhanced fungal-induced JA signaling. Metal-based defense against biotic stress is an attractive hypothesis on evolutionary advantages of plant metal hyperaccumulation. Metals may compensate for a defect in biotic stress signaling in hyperaccumulators (metal-therapy) by either or both direct toxicity to pathogens and by metal-induced alternative signaling pathways. Jasmonic acid (JA) and salicylic acid (SA) are well-established components of stress signaling pathways. However, few studies evaluate the influence of metals on endogenous concentrations of these defense-related hormones. Even less data are available for metal hyperaccumulators. To further test the metal-therapy hypothesis we analyzed endogenous SA and JA concentrations in Noccaea praecox, a cadmium (Cd) hyperaccumulator. Plants treated or not with Cd, were exposed to mechanical wounding, expected to enhance JA signaling, and/or to infection by biotrophic fungus Erysiphe cruciferarum for triggering SA. JA and SA were analyzed in leaf extracts using LC-ESI(-)-MS/MS. Plants without Cd were more susceptible to fungal attack than plants receiving Cd. Cadmium alone tended to increase leaf SA but not JA. Either or both fungal attack and mechanical wounding decreased SA levels and enhanced JA in the Cd-rich leaves of plants exposed to Cd. High leaf Cd in N. praecox seems to hamper biotic-stress-induced SA, while triggering JA signaling in response to fungal attack and wounding. To the best of our knowledge, this is the first report on the endogenous JA and SA levels in a Cd-hyperaccumulator exposed to different biotic and abiotic stresses. Our results support the view of a defect in SA stress signaling in Cd hyperaccumulating N. praecox.


Subject(s)
Ascomycota/physiology , Cadmium/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Stress, Mechanical , Thlaspi/metabolism , Thlaspi/microbiology , Biomass , Plant Diseases/microbiology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/microbiology
4.
Plant Biol (Stuttg) ; 11(2): 170-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19228324

ABSTRACT

The role of a hemiparasitic life-style in plant resistance to toxic trace elements in polluted soils is unclear. Restriction of metal uptake by the host, restriction of metal transfer from host to parasite, or transformation of metals into a less toxic form may play a role. This study analysed the transfer of selected mineral elements from soil to host (Cistus spp.) and from host to hemiparasite (Odontites lutea) at locations with different metal burdens: a Cu-rich serpentine site, Pb-Ba mine spoil and an unpolluted soil. Highest soil-to-host transfer factors for K, Mg, Ca, Zn, Cu and Pb were observed on the unpolluted soil. Statistically significant differences among locations of host-to-parasite transfer factors were only found for Ca and Pb. Restriction of transfer of unfavourable Ca/Mg ratios, characteristic at the serpentine site, and of high Pb and Zn concentrations at the Pb-Ba mine occurred mainly at the soil-host, and not at the host-parasite, level. Odontites lutea was able to withstand enhanced Zn and Pb concentrations and low Fe/Cu ratios in shoot tissue without developing toxicity symptoms. This could be caused by specific metal resistance mechanisms in this hemiparasite and/or the transformation and transfer of these metals into a less toxic form by the metal-tolerant host.


Subject(s)
Cistus/metabolism , Metals, Heavy/metabolism , Minerals/metabolism , Scrophulariaceae/metabolism , Barium/metabolism , Biological Transport , Calcium/metabolism , Hydrogen-Ion Concentration , Magnesium/metabolism , Plant Roots/parasitology , Potassium/metabolism , Soil , Soil Pollutants/metabolism
5.
New Phytol ; 165(3): 763-71, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15720687

ABSTRACT

* The hypothesis that zinc (Zn) hyperaccumulation defends Thlaspi caerulescens against herbivores is tested with the snail Helix aspersa. We investigated the effects of leaf zinc, cadmium, glucosinolate, nitrogen and dry matter concentrations on the feeding preferences of snails. * Four T. caerulescens populations from southern France (two from metalliferous and two from normal soils) were grown on low- and high-Zn soils to obtain contrasting leaf Zn concentrations. Plants were also collected in the field, and binary feeding choices involving low- and high-Zn leaves were conducted. * Foliar Zn, Cd, N and dry matter concentrations did not affect the feeding choices of snails, whereas glucosinolate had a significant negative effect on herbivore preferences. Compared with metallicolous plants, nonmetallicolous ones appeared to be better protected against snails, whatever their Zn concentration. * These results do not support the defence hypothesis, as glucosinolates appear to decrease the degree of herbivory when Zn does not.


Subject(s)
Glucosinolates/metabolism , Snails/physiology , Thlaspi/physiology , Zinc/metabolism , Animals , Cadmium/metabolism , Cadmium/pharmacology , Feeding Behavior/drug effects , Glucosinolates/pharmacology , Thlaspi/metabolism , Zinc/pharmacology
6.
J Exp Bot ; 52(359): 1339-52, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11432953

ABSTRACT

Aluminium (Al) toxicity is widely considered to be the most important growth-limiting factor for plants in strongly acid soils (pH<5.0). The inhibition of root elongation in three varieties of maize (Zea mays L. vars Clavito, HS701b and Sikuani) was followed over the first 48 h of Al treatment, and during the initial 10 h elongation was determined on an hourly basis. The silicon (Si)-induced amelioration of Al toxicity was investigated by pre-treating seedlings for 72 h in nutrient solutions with 1000 microM Si before transfer into solutions with 0, 20 or 50 microM Al (without Si). Plants were either grown in complete low ionic strength nutrient solutions (CNS) or in low salt solutions of 0.4 mM CaCl2 (LSS). In addition, the role of root exudation of organic compounds as a mechanism of Si-induced alleviation of Al toxicity was investigated. Aluminium-induced inhibition of root elongation in the maize var. HS701b was observed within 1 h of Al exposure. After a lag time of at least 8 h, Si-induced alleviation of Al toxicity was observed in this variety when grown in LSS. In the Al-resistant var. Sikuani, Al-resistance was only observed after exposure to 50 microM Al, and not after exposure to 20 microM Al, suggesting that there exists a threshold Al concentration before the mechanisms of Al resistance are activated. Aluminium stimulated root exudation of oxalic acid in all three varieties, but exudate concentrations did not increase with either Al resistance or with Si pretreatment. Aluminium and Si triggered release of catechol and of the flavonoid-type phenolics: catechin, and quercetin. In the Al-resistant variety, Sikuani, Al-exposed plants pretreated with Si exuded up to 15 times more phenolics than those plants not pretreated with Si. The flavonoid-type phenolics, to date unconsidered, appear to play a role in the mechanism(s) of Si-induced amelioration of Al toxicity.


Subject(s)
Aluminum/toxicity , Plant Roots/drug effects , Silicon/pharmacology , Zea mays/drug effects , Aluminum/metabolism , Anions/metabolism , Calcium Chloride/pharmacology , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Catechin/analogs & derivatives , Catechin/metabolism , Citric Acid/metabolism , Drug Resistance , Oxalates/metabolism , Phenols/metabolism , Plant Roots/growth & development , Plant Roots/physiology , Quercetin/metabolism , Soil , Zea mays/growth & development , Zea mays/physiology
7.
Arch Environ Contam Toxicol ; 39(4): 440-4, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11031303

ABSTRACT

External and internal lowest observed effect concentrations (LOECs) for Ba in bean plants (Phaseolus vulgaris) were established using a nutrient solution culture system where BaSO(4) precipitation in the growth medium was avoided. This was achieved by alternating every 24 h with a nutrient solution containing Ba (0, 50, 500, or 5000 microM) and all essential elements except S, with another containing S and all other nutrients but no Ba. The external LOEC for acute toxicity symptoms in the form of leaf withering and leaf growth inhibition was 481 microM of free Ba(2+). This was also the LOEC for the complete inhibition of elongation of secondary roots, while for the elongation of the primary root the external LOEC was 4,821 microM. Barium interfered with both the sulfate transport from roots to shoots and the import of Ca into leaves. However, K was the most Ba-sensitive nutrient. External LOEC for reduced leaf K concentrations was 48 microM free Ba(2+); the corresponding internal LOECs for primary and trifoliolate leaves were 700 and 460 mg kg(-1) DW, respectively.


Subject(s)
Barium/toxicity , Fabaceae/physiology , Plant Structures/drug effects , Plants, Medicinal , Soil Pollutants/toxicity , Barium/analysis , Hydroponics , Plant Structures/growth & development , Plant Structures/metabolism , Soil Pollutants/analysis , Toxicity Tests, Acute
8.
J Chromatogr A ; 889(1-2): 75-81, 2000 Aug 11.
Article in English | MEDLINE | ID: mdl-10985538

ABSTRACT

Liquid chromatography-atmospheric pressure chemical ionization mass spectrometry was used to identify glucosinolates in plant extracts. Optimization of the analytical conditions and the determination of the method detection limit was performed using commercial 2-propenylglucosinolate (sinigrin). Optimal values for the following parameters were determined: nebulization pressure, gas temperature, flux of drying gas, capillar voltage, corona current and fragmentor conditions. The method detection limit for sinigrin was 2.85 ng. For validation of the method the glucosinolates in reference material (rapeseed) from the Community Bureau of Reference Materials (BCR) were analyzed. The method was applied for the determination of glucosinolates in Thlaspi caerulescens plants.


Subject(s)
Brassica/chemistry , Brassicaceae/chemistry , Chromatography, Liquid/methods , Glucosinolates/analysis , Mass Spectrometry/methods , Atmospheric Pressure , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Reference Standards
9.
Plant Physiol ; 119(2): 435-44, 1999 Feb.
Article in English | MEDLINE | ID: mdl-9952438

ABSTRACT

Root elongation, hematoxylin staining, and changes in the ultrastructure of root-tip cells of an Al-tolerant maize variety (Zea mays L. C 525 M) exposed to nutrient solutions with 20 &mgr;M Al (2.1 &mgr;M Al3+ activity) for 0, 4, and 24 h were investigated in relation to the subcellular distribution of Al using scanning transmission electron microscopy and energy-dispersive x-ray microanalysis on samples fixed by different methods. Inhibition of root-elongation rates, hematoxylin staining, cell wall thickening, and disturbance of the distribution of pyroantimoniate-stainable cations, mainly Ca, was observed only after 4 and not after 24 h of exposure to Al. The occurrence of these transient, toxic Al effects on root elongation and in cell walls was accompanied by the presence of solid Al-P deposits in the walls. Whereas no Al was detectable in cell walls after 24 h, an increase of vacuolar Al was observed after 4 h of exposure. After 24 h, a higher amount of electron-dense deposits containing Al and P or Si was observed in the vacuoles. These results indicate that in this tropical maize variety, tolerance mechanisms that cause a change in apoplastic Al must be active. Our data support the hypothesis that in Al-tolerant plants, Al can rapidly cross the plasma membrane; these data clearly contradict the former conclusions that Al mainly accumulates in the apoplast and enters the symplast only after severe cell damage has occurred.

10.
Plant Physiol ; 113(2): 595-602, 1997 Feb.
Article in English | MEDLINE | ID: mdl-12223628

ABSTRACT

Root and root cell pressure-probe techniques were used to investigate the possible relationship between Al- or H+-induced alterations of the hydraulic conductivity of root cells (LPc) and whole-root water conductivity (LPr) in maize (Zea mays L.) plants. To distinguish between H+ and Al effects two varieties that differ in H+ and Al tolerance were assayed. Based on root elongation rates after 24 h in nutrient solution of pH 6.0, pH 4.5, or pH 4.5 plus 50 [mu]M Al, the variety Adour 250 was found to be H+-sensitive and Al-tolerant, whereas the variety BR 201 F was found to be H+-tolerant but Al-sensitive. No Al-induced decrease of root pressure and root cell turgor was observed in Al-sensitive BR 201 F, indicating that Al toxicity did not cause a general breakdown of membrane integrity and that ion pumping to the stele was maintained. Al reduced LPc more than LPr in Al-sensitive BR 201 F. Proton toxicity in Adour 250 affected LPr more than LPc. In this Al-tolerant variety LPc was increased by Al. Nevertheless, this positive effect on LPc did not render higher LPr values. In conclusion, there were no direct relationships between Al- or H+-induced decreases of LPr and the effects on LPc. To our knowledge, this is the first time that the influence of H+ and Al on root and root cell water relations has been directly measured by pressure-probe techniques.

11.
Plant Physiol ; 90(4): 1365-71, 1989 Aug.
Article in English | MEDLINE | ID: mdl-16666937

ABSTRACT

Ten day old bush bean plants (Phaseolus vulgaris L. cv Contender) were used to analyze the effects of 3 micromolar Cd on the time courses of expansion growth, dry weight, leaf water relations, stomatal resistance, and abscisic acid (ABA) levels in roots and leaves. Control and Cd-treated plants were grown for 144 hours in nutrient solution. Samples were taken at 24 hour intervals. At the 96 and 144 hour harvests, additional measurements were made on excised leaves which were allowed to dry for 2 hours. From the 48 hour harvest, Cd-treated plants showed lower leaf relative water contents and higher stomatal resistances than controls. At the same time, root and leaf expansion growth, but not dry weight, was significantly reduced. The turgor potentials of leaves from Cd-treated plants were nonsignificantly higher than those of control leaves. A significant increase (almost 400%) of the leaf ABA concentration was detected after 120 hours exposure to Cd. But Cd was found to inhibit ABA accumulation during drying of excised leaves. It is concluded that Cd-induced decrease of expansion growth is not due to turgor decrease. The possible mechanisms of Cd-induced stomatal closure are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL