Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7391, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450762

ABSTRACT

Expression of guide RNAs in the CRISPR/Cas9 system typically requires the use of RNA polymerase III promoters, which are not cell-type specific. Flanking the gRNA with self-cleaving ribozyme motifs to create a self-cleaving gRNA overcomes this limitation. Here, we use self-cleaving gRNAs to create drug-selectable gene editing events in specific hepatocyte loci. A recombinant Adeno Associated Virus vector targeting the Albumin locus with a promoterless self-cleaving gRNA to create drug resistance is linked in cis with the therapeutic transgene. Gene expression of both are dependent on homologous recombination into the target locus. In vivo drug selection for the precisely edited hepatocytes allows >30-fold expansion of gene-edited cells and results in therapeutic levels of a human Factor 9 transgene. Importantly, self-cleaving gRNA expression is also achieved after targeting weak hepatocyte genes. We conclude that self-cleaving gRNAs are a powerful system to enable cell-type specific in vivo drug resistance for therapeutic gene editing applications.


Subject(s)
RNA, Catalytic , RNA, Guide, Kinetoplastida , Humans , RNA, Guide, Kinetoplastida/genetics , Gene Editing , Homologous Recombination , RNA, Catalytic/genetics , Transgenes
2.
Hum Gene Ther ; 33(15-16): 789-800, 2022 08.
Article in English | MEDLINE | ID: mdl-35297680

ABSTRACT

Diabetes mellitus, caused by loss or dysfunction of the insulin-producing beta cells of the pancreas, is a promising target for recombinant adeno-associated virus (rAAV)-mediated gene therapy. To target potential therapeutic payloads specifically to beta cells, a cell type-specific expression control element is needed. In this study, we tested a series of rAAV vectors designed to express transgenes specifically in human beta cells using the islet-tropic rAAV-KP1 capsid. A small promoter, consisting of only 84 bp of the insulin core promoter was not beta cell-specific in AAV, but highly active in multiple cell types, including tissues outside the pancreas. A larger 363 bp fragment of the insulin promoter (INS) also lacked beta cell specificity. However, beta cell-specific expression was achieved by combining two regulatory elements, a promoter consisting of two copies of INS (INS × 2) and microRNA (miRNA) recognition elements (MREs). The INS × 2 promoter alone showed some beta cell preference, but not tight specificity. To reduce unspecific transgene expression in alpha cells, negative regulation by miRNAs was applied. MREs that are recognized by miRNAs abundant in alpha cells effectively downregulated the transgene expression in these cells. The INS2 × -MRE expression vector was highly specific to human beta cells and stem cell-derived beta cells.


Subject(s)
Dependovirus , MicroRNAs , Dependovirus/genetics , Dependovirus/metabolism , Genetic Vectors/genetics , Humans , Insulin/metabolism , MicroRNAs/metabolism , Transgenes
3.
Mol Ther ; 29(10): 2898-2909, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34461297

ABSTRACT

Recombinant adeno-associated viral (rAAV) vectors are considered promising tools for gene therapy directed at the liver. Whereas rAAV is thought to be an episomal vector, its single-stranded DNA genome is prone to intra- and inter-molecular recombination leading to rearrangements and integration into the host cell genome. Here, we ascertained the integration frequency of rAAV in human hepatocytes transduced either ex vivo or in vivo and subsequently expanded in a mouse model of xenogeneic liver regeneration. Chromosomal rAAV integration events and vector integrity were determined using the capture-PacBio sequencing approach, a long-read next-generation sequencing method that has not previously been used for this purpose. Chromosomal integrations were found at a surprisingly high frequency of 1%-3% both in vitro and in vivo. Importantly, most of the inserted rAAV sequences were heavily rearranged and were accompanied by deletions of the host genomic sequence at the integration site.


Subject(s)
Dependovirus/physiology , Hepatocytes/transplantation , Liver Regeneration , Animals , Cells, Cultured , Chromosomes/genetics , Dependovirus/genetics , Disease Models, Animal , Genetic Therapy , Genetic Vectors/administration & dosage , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Mice , Transduction, Genetic , Virus Integration
4.
Sci Transl Med ; 13(597)2021 06 09.
Article in English | MEDLINE | ID: mdl-34108249

ABSTRACT

Gene therapy by integrating vectors is promising for monogenic liver diseases, especially in children where episomal vectors remain transient. However, reaching the therapeutic threshold with genome-integrating vectors is challenging. Therefore, we developed a method to expand hepatocytes bearing therapeutic transgenes. The common fever medicine acetaminophen becomes hepatotoxic via cytochrome p450 metabolism. Lentiviral vectors with transgenes linked in cis to a Cypor shRNA were administered to neonatal mice. Hepatocytes lacking the essential cofactor of Cyp enzymes, NADPH-cytochrome p450 reductase (Cypor), were selected in vivo by acetaminophen administration, replacing up to 50% of the hepatic mass. Acetaminophen treatment of the mice resulted in over 30-fold expansion of transgene-bearing hepatocytes and achieved therapeutic thresholds in hemophilia B and phenylketonuria. We conclude that therapeutically modified hepatocytes can be selected safely and efficiently in preclinical models with a transient regimen of moderately hepatotoxic acetaminophen.


Subject(s)
Acetaminophen , Hepatocytes , Animals , Genetic Therapy , Liver , Mice , Transgenes
5.
Mol Ther ; 29(2): 680-690, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33554867

ABSTRACT

Adeno-associated virus (AAV) integrates into host genomes at low frequency, but when integration occurs in oncogenic hotspots it can cause hepatocellular carcinoma (HCC). Given the possibility of recombinant AAV (rAAV) integration leading to HCC, common causes of liver inflammation like non-alcoholic fatty liver disease (NAFLD) may increase the risk of rAAV-induced HCC. A rAAV targeting the oncogenic mouse Rian locus was used, and as expected led to HCC in all mice infected as neonates, likely due to growth-related hepatocyte proliferation in young mice. Mice infected with rAAV as adults did not develop HCC unless they were fed a diet leading to NAFLD, with increased inflammation and hepatocyte proliferation. Female mice were less susceptible to rAAV-induced HCC, and male mice with NAFLD treated with estrogen exhibited less inflammation and immune exhaustion associated with oncogenesis compared to those without estrogen. Adult NAFLD mice infected with a non-targeted control rAAV also developed HCC, though only half as frequently as those exposed to the Rian targeted rAAV. This study shows that adult mice exposed to rAAV gene therapy in the context of chronic liver disease developed HCC at high frequency, and thus warrants further study in humans given the high prevalence of NAFLD in the population.


Subject(s)
Carcinoma, Hepatocellular/etiology , Dependovirus/genetics , Genetic Therapy/adverse effects , Genetic Vectors/genetics , Liver Diseases/complications , Liver Diseases/etiology , Liver Neoplasms/etiology , Animals , Carcinoma, Hepatocellular/diagnosis , Disease Models, Animal , Genetic Therapy/methods , Incidence , Liver Diseases/pathology , Liver Neoplasms/diagnosis , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...