Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38948863

ABSTRACT

Functional connectivity (FC) is the degree of synchrony of time series between distinct, spatially separated brain regions. While traditional FC analysis assumes the temporal stationarity throughout a brain scan, there is growing recognition that connectivity can change over time and is not stationary, leading to the concept of dynamic FC (dFC). Resting-state functional magnetic resonance imaging (fMRI) can assess dFC using the sliding window method with the correlation analysis of fMRI signals. Accurate statistical inference of sliding window correlation must consider the autocorrelated nature of the time series. Currently, the dynamic consideration is mainly confined to the point estimation of sliding window correlations. Using in vivo resting-state fMRI data, we first demonstrate the non-stationarity in both the cross-correlation function (XCF) and the autocorrelation function (ACF). Then, we propose the variance estimation of the sliding window correlation considering the nonstationary of XCF and ACF. This approach provides a means to dynamically estimate confidence intervals in assessing dynamic connectivity. Using simulations, we compare the performance of the proposed method with other methods, showing the impact of dynamic ACF and XCF on connectivity inference. Accurate variance estimation can help in addressing the critical issue of false positivity and negativity.

2.
Magn Reson Med ; 91(3): 860-885, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37946584

ABSTRACT

Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.


Subject(s)
Brain , Diffusion Magnetic Resonance Imaging , Consensus , Brain/metabolism , Magnetic Resonance Spectroscopy/methods , Diffusion , Diffusion Magnetic Resonance Imaging/methods
3.
NMR Biomed ; 34(5): e4261, 2021 05.
Article in English | MEDLINE | ID: mdl-31999397

ABSTRACT

This study evaluated the utility of concurrent water signal acquisition as part of the water suppression in MR spectroscopic imaging (MRSI), to allow simultaneous water referencing for metabolite quantification, and to concurrently acquire functional MRI (fMRI) data. We integrated a spatial-spectral binomial water excitation RF pulse and a short spatial-spectral echo-planar readout into the water suppression module of 2D and 3D proton-echo-planar-spectroscopic-imaging (PEPSI) with a voxel size as small as 4 x 4 x 6 mm3 . Metabolite quantification in reference to tissue water was validated in healthy controls for different prelocalization methods (spin-echo, PRESS and semi-LASER) and the clinical feasibility of a 3-minute 3D semi-Laser PEPSI scan (TR/TE: 1250/32 ms) with water referencing in patients with brain tumors was demonstrated. Spectral quality, SNR, Cramer-Rao-lower-bounds and water suppression efficiency were comparable with conventional PEPSI. Metabolite concentration values in reference to tissue water, using custom LCModel-based spectral fitting with relaxation correction, were in the range of previous studies and independent of the prelocalization method used. Next, we added a phase-encoding undersampled echo-volumar imaging (EVI) module during water suppression to concurrently acquire metabolite maps with water referencing and fMRI data during task execution and resting state in healthy controls. Integration of multimodal signal acquisition prolongated minimum TR by less than 50 ms on average. Visual and motor activation in concurrent fMRI/MRSI (TR: 1250-1500 ms, voxel size: 4 x 4 x 6 mm3 ) was readily detectable in single-task blocks with percent signal change comparable with conventional fMRI. Resting-state connectivity in sensory and motor networks was detectable in 4 minutes. This hybrid water suppression approach for multimodal imaging has the potential to significantly reduce scan time and extend neuroscience research and clinical applications through concurrent quantitative MRSI and fMRI acquisitions.


Subject(s)
Magnetic Resonance Imaging , Signal Processing, Computer-Assisted , Water/chemistry , Adolescent , Adult , Brain/diagnostic imaging , Female , Humans , Infant , Male , Metabolome , Middle Aged , Radio Waves , Young Adult
4.
NMR Biomed ; 34(5): e4309, 2021 05.
Article in English | MEDLINE | ID: mdl-32350978

ABSTRACT

Magnetic resonance spectroscopic imaging (MRSI) offers considerable promise for monitoring metabolic alterations associated with disease or injury; however, to date, these methods have not had a significant impact on clinical care, and their use remains largely confined to the research community and a limited number of clinical sites. The MRSI methods currently implemented on clinical MRI instruments have remained essentially unchanged for two decades, with only incremental improvements in sequence implementation. During this time, a number of technological developments have taken place that have already greatly benefited the quality of MRSI measurements within the research community and which promise to bring advanced MRSI studies to the point where the technique becomes a true imaging modality, while making the traditional review of individual spectra a secondary requirement. Furthermore, the increasing use of biomedical MR spectroscopy studies has indicated clinical areas where advanced MRSI methods can provide valuable information for clinical care. In light of this rapidly changing technological environment and growing understanding of the value of MRSI studies for biomedical studies, this article presents a consensus from a group of experts in the field that reviews the state-of-the-art for clinical proton MRSI studies of the human brain, recommends minimal standards for further development of vendor-provided MRSI implementations, and identifies areas which need further technical development.


Subject(s)
Consensus , Magnetic Resonance Spectroscopy , Neuroimaging , Brain/diagnostic imaging , Expert Testimony , Humans , Metabolome
5.
Brain Connect ; 10(8): 448-463, 2020 10.
Article in English | MEDLINE | ID: mdl-32892629

ABSTRACT

Background/Introduction: There is considerable interest in using real-time functional magnetic resonance imaging (fMRI) for monitoring functional connectivity dynamics. To date, the majority of real-time resting-state fMRI studies have examined a limited number of brain regions. This is, in part, due to the computational demands of traditional seed- and independent component analysis-based methods, in particular when using increasingly available high-speed fMRI methods. Methods: This study describes a computationally efficient, real-time, seed-based, resting-state fMRI analysis pipeline using moving averaged sliding-windows (ASW) with partial correlations and regression of motion parameters and signals from white matter and cerebrospinal fluid. Results: Analytical and numerical analyses of ASW correlation and sliding-window regression as a function of window width show selectable bandpass filter characteristics and effective suppression of artifactual correlations resulting from signal drifts and transients. The analysis pipeline is compatible with multislab echo-volumar imaging and simultaneous multislice echo-planar imaging with repetition times as short as 136 msec. High-speed, resting-state fMRI data in healthy controls demonstrate the effectiveness of this approach for minimizing artifactual correlations in white and gray matter, which was comparable to conventional regression across the entire scan. Integrating sliding-window averaging (width: W1) within a second-level sliding-window (width: W2) enabled monitoring of intra- and internetwork correlation dynamics of up to 12 resting-state networks with bandpass filter characteristics determined by the first-level sliding-window and temporal resolution W1 + W2. Conclusions: The computational performance and confound tolerance make this seed-based, resting-state fMRI approach suitable for real-time monitoring of data quality and resting-state connectivity dynamics in neuroscience and clinical research studies. Impact statement Using averaged sliding-windows for seed-based correlation and regression of confounding signals provides a powerful model-free approach to increase tolerance to artifactual signal transients in resting-state analysis. The algorithmic efficiency of this sliding-window approach enables real-time, seed-based, resting-state functional magnetic resonance imaging (fMRI) of multiple networks with computation of connectivity matrices and online monitoring of data quality. Integration of a second-level sliding-window enables mapping of resting-state connectivity dynamics. Sensitivity and tolerance to confounding signals compare favorably with conventional correlation and confound regression across the entire scan. This methodological advance has the potential to enhance the clinical utility of resting-state fMRI and facilitate neuroscience applications.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Pathways/diagnostic imaging , Neuroimaging/methods , Algorithms , Artifacts , Brain Mapping/methods , Cerebrospinal Fluid/diagnostic imaging , Gray Matter/diagnostic imaging , Humans , Nerve Net/diagnostic imaging , Reproducibility of Results , Rest , White Matter/diagnostic imaging
6.
NMR Biomed ; : e4347, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32808407

ABSTRACT

With a 40-year history of use for in vivo studies, the terminology used to describe the methodology and results of magnetic resonance spectroscopy (MRS) has grown substantially and is not consistent in many aspects. Given the platform offered by this special issue on advanced MRS methodology, the authors decided to describe many of the implicated terms, to pinpoint differences in their meanings and to suggest specific uses or definitions. This work covers terms used to describe all aspects of MRS, starting from the description of the MR signal and its theoretical basis to acquisition methods, processing and to quantification procedures, as well as terms involved in describing results, for example, those used with regard to aspects of quality, reproducibility or indications of error. The descriptions of the meanings of such terms emerge from the descriptions of the basic concepts involved in MRS methods and examinations. This paper also includes specific suggestions for future use of terms where multiple conventions have emerged or coexisted in the past.

7.
J Affect Disord ; 273: 552-561, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32560953

ABSTRACT

BACKGROUND: Trichotillomania (TTM) is a chronic and impairing psychiatric disorder with suspected dysfunctional cortico-striato-thalamo-cortical (CSTC) circuit activity reflecting excitatory/inhibitory signaling imbalance. TTM neurochemistry is understudied, with no prior research using magnetic resonance spectroscopy (MRS). This pilot investigation examined associations between TTM diagnosis, symptom severity, and response to behavioral treatment with MRS neurometabolites glutamate (Glu) and γ-aminobutyric acid (GABA) in CSTC structures. METHODS: Proton echo-planar spectroscopic imaging (PEPSI) MRS was acquired from bilateral pregenual anterior cingulate cortex (pACC), caudate, putamen, globus pallidus, thalamus, and proximal white matter in 10 unmedicated girls with TTM, ages 9-17 years, before and after treatment, and from 13 age- and sex-matched healthy controls. RESULTS: Nine of 10 TTM patients were treatment responders. Pretreatment mean Glu and GABA did not differ significantly between participants and controls. Pretreatment TTM symptoms were correlated with Glu in (left + right) pACC (r = 0.88, p = 0.02) and thalamus (r = 0.82, p = 0.012), and were negatively correlated with pACC GABA (r = -0.84, p = 0.034). Mean GABA in putamen increased 69% (baseline to post-treatment) (p = 0.027). Higher pretreatment Glu in caudate, putamen, globus pallidus, and thalamus predicted greater symptom decreases with treatment (all r < -0.6, p < 0.05); higher caudate GABA predicted less treatment-related symptom decline (r = 0.86, p = 0.014). LIMITATIONS: Small sample, GABA quantified with spectral fitting rather than editing. CONCLUSION: Consistent with other neuroimaging, MRS reveals discrete CSTC chemical changes with effective behavior therapy, and possibly with TTM etiology. TTM symptoms relate to excess excitatory versus inhibitory signaling in pACC and thalamus; symptom improvement may reflect reduced excitatory drive of the CSTC direct-pathway activity.


Subject(s)
Obsessive-Compulsive Disorder , Trichotillomania , Adolescent , Behavior Therapy , Child , Female , Glutamic Acid , Gyrus Cinguli/diagnostic imaging , Humans , Trichotillomania/diagnostic imaging , Trichotillomania/therapy
8.
Hum Brain Mapp ; 41(3): 797-814, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31692177

ABSTRACT

Resting-state functional magnetic resonance imaging (rsfMRI) is a promising task-free functional imaging approach, which may complement or replace task-based fMRI (tfMRI) in patients who have difficulties performing required tasks. However, rsfMRI is highly sensitive to head movement and physiological noise, and validation relative to tfMRI and intraoperative electrocortical mapping is still necessary. In this study, we investigate (a) the feasibility of real-time rsfMRI for presurgical mapping of eloquent networks with monitoring of data quality in patients with brain tumors and (b) rsfMRI localization of eloquent cortex compared with tfMRI and intraoperative electrocortical stimulation (ECS) in retrospective analysis. Five brain tumor patients were studied with rsfMRI and tfMRI on a clinical 3T scanner using MultiBand(8)-echo planar imaging (EPI) with repetition time: 400 ms. Moving-averaged sliding-window correlation analysis with regression of motion parameters and signals from white matter and cerebrospinal fluid was used to map sensorimotor and language resting-state networks. Data quality monitoring enabled rapid optimization of scan protocols, early identification of task noncompliance, and head movement-related false-positive connectivity to determine scan continuation or repetition. Sensorimotor and language resting-state networks were identifiable within 1 min of scan time. The Euclidean distance between ECS and rsfMRI connectivity and task-activation in motor cortex, Broca's, and Wernicke's areas was 5-10 mm, with the exception of discordant rsfMRI and ECS localization of Wernicke's area in one patient due to possible cortical reorganization and/or altered neurovascular coupling. This study demonstrates the potential of real-time high-speed rsfMRI for presurgical mapping of eloquent cortex with real-time data quality control, and clinically acceptable concordance of rsfMRI with tfMRI and ECS localization.


Subject(s)
Brain Mapping/standards , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Cerebral Cortex/diagnostic imaging , Diffusion Tensor Imaging/standards , Echo-Planar Imaging/standards , Electrocorticography/standards , Nerve Net/diagnostic imaging , Preoperative Care , Adult , Brain Mapping/methods , Cerebral Cortex/physiology , Diffusion Tensor Imaging/methods , Echo-Planar Imaging/methods , Electric Stimulation/methods , Electrocorticography/methods , Feasibility Studies , Female , Humans , Intraoperative Neurophysiological Monitoring/methods , Intraoperative Neurophysiological Monitoring/standards , Language , Male , Middle Aged , Nerve Net/physiology , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/physiology
9.
Magn Reson Med ; 82(2): 527-550, 2019 08.
Article in English | MEDLINE | ID: mdl-30919510

ABSTRACT

Proton MRS (1 H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0 ) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/metabolism , Consensus , Humans , Protons
10.
Neuroimage Clin ; 22: 101747, 2019.
Article in English | MEDLINE | ID: mdl-30921608

ABSTRACT

Brain functional networks identified from fMRI data can provide potential biomarkers for brain disorders. Group independent component analysis (GICA) is popular for extracting brain functional networks from multiple subjects. In GICA, different strategies exist for reconstructing subject-specific networks from the group-level networks. However, it is unknown whether these strategies have different sensitivities to group differences and abilities in distinguishing patients. Among GICA, spatio-temporal regression (STR) and spatially constrained ICA approaches such as group information guided ICA (GIG-ICA) can be used to propagate components (indicating networks) to a new subject that is not included in the original subjects. In this study, based on the same a priori network maps, we reconstructed subject-specific networks using these two methods separately from resting-state fMRI data of 151 schizophrenia patients (SZs) and 163 healthy controls (HCs). We investigated group differences in the estimated functional networks and the functional network connectivity (FNC) obtained by each method. The networks were also used as features in a cross-validated support vector machine (SVM) for classifying SZs and HCs. We selected features using different strategies to provide a comprehensive comparison between the two methods. GIG-ICA generally showed greater sensitivity in statistical analysis and better classification performance (accuracy 76.45 ±â€¯8.9%, sensitivity 0.74 ±â€¯0.11, specificity 0.79 ±â€¯0.11) than STR (accuracy 67.45 ±â€¯8.13%, sensitivity 0.65 ±â€¯0.11, specificity 0.71 ±â€¯0.11). Importantly, results were also consistent when applied to an independent dataset including 82 HCs and 82 SZs. Our work suggests that the functional networks estimated by GIG-ICA are more sensitive to group differences, and GIG-ICA is promising for identifying image-derived biomarkers of brain disease.


Subject(s)
Brain/diagnostic imaging , Databases, Factual/classification , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Schizophrenia/classification , Schizophrenia/diagnostic imaging , Adult , Female , Humans , Male , Principal Component Analysis/classification
11.
J Neuroimaging ; 29(1): 5-13, 2019 01.
Article in English | MEDLINE | ID: mdl-30295987

ABSTRACT

Stroke, either ischemic or hemorrhagic, accounts for significantly high morbidity and mortality rates around the globe effecting millions of lives annually. For the past few decades, ultrasound has been extensively investigated to promote clot lysis for the treatment of stroke, myocardial infarction, and acute peripheral arterial occlusions, with or without the use of tPA or contrast agents. In the age of modern minimal invasive techniques, magnetic resonance imaging-guided high-intensity focused ultrasound is a new emerging modality that seems to promise therapeutic utilities for both ischemic and hemorrhagic stroke. High-intensity focused ultrasound causes thermal heating as the tissue absorbs the mechanical energy transmitted by the ultrasonic waves leading to tissue denaturation and coagulation. Several in-vitro and in-vivo studies have demonstrated the viability of this technology for sonothrombolysis in both types of stroke and have warranted clinical trials. Apart from safety and efficacy, initiation of trials would further enable answers regarding its practical application in a clinical setup. Though this technology has been under study for treatment of various brain diseases for some decades now, relatively very few neurologists and even neurosurgeons seem to be acquainted with it. The aim of this review is to provide basic understanding of this powerful technology and discuss its clinical application and potential role as an emerging viable therapeutic option for the future management of stroke.


Subject(s)
Brain Ischemia/therapy , Intracranial Hemorrhages/therapy , Stroke/therapy , Ultrasonic Therapy/methods , Humans , Magnetic Resonance Imaging/methods , Treatment Outcome
12.
Tomography ; 4(3): 110-122, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30320211

ABSTRACT

Here, we developed a symmetric echo-planar spectroscopic imaging (EPSI) sequence for hyperpolarized 13C imaging on a clinical hybrid positron emission tomography/magnetic resonance imaging system. The pulse sequence uses parallel reconstruction pipelines to separately reconstruct data from odd-and-even gradient echoes to reduce artifacts from gradient imbalances. The ramp-sampled data in the spatiotemporal frequency space are regridded to compensate for the chemical-shift displacements. Unaliasing of nonoverlapping peaks outside of the sampled spectral width was performed to double the effective spectral width. The sequence was compared with conventional phase-encoded chemical-shift imaging (CSI) in phantoms, and it was evaluated in a canine cancer patient with ameloblastoma after injection of hyperpolarized [1-13C]pyruvate. The relative signal-to-noise ratio of EPSI with respect to CSI was 0.88, which is consistent with the decrease in sampling efficiency due to ramp sampling. Data regridding in the spatiotemporal frequency space significantly reduced spatial blurring compared with direct fast Fourier transform. EPSI captured the spatial distributions of both metabolites and their temporal dynamics in vivo with an in-plane spatial resolution of 5 × 9 mm2 and a temporal resolution of 3 seconds. Significantly higher spatial and temporal resolution for delineating anatomical structures in vivo was achieved for EPSI metabolic maps than for CSI maps, which suffered spatiotemporal blurring. The EPSI sequence showed promising results in terms of short acquisition time and sufficient spectral bandwidth of 500 Hz, allowing to adjust the trade-off between signal-to-noise ratio and encoding speed.

13.
Neuroimage ; 164: 202-213, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28163143

ABSTRACT

Current studies of resting-state connectivity rely on coherent signal fluctuations at frequencies below 0.1 Hz, however, recent studies using high-speed fMRI have shown that fluctuations above 0.5 Hz may exist. This study replicates the feasibility of measuring high frequency (HF) correlations in six healthy controls and a patient with a brain tumor while analyzing non-physiological signal sources via simulation. Resting-state data were acquired using a high-speed multi-slab echo-volumar imaging pulse sequence with 136 ms temporal resolution. Bandpass frequency filtering in combination with sliding window seed-based connectivity analysis using running mean of the correlation maps was employed to map HF correlations up to 3.7 Hz. Computer simulations of Rician noise and the underlying point spread function were analyzed to estimate baseline spatial autocorrelation levels in four major networks (auditory, sensorimotor, visual, and default-mode). Using seed regions based on Brodmann areas, the auditory and default-mode networks were observed to have significant frequency band dependent HF correlations above baseline spatial autocorrelation levels. Correlations in the sensorimotor network were at trend level. The auditory network was still observed using a unilateral single voxel seed. In the patient, HF auditory correlations showed a spatial displacement near the tumor consistent with the displacement seen at low frequencies. In conclusion, our data suggest that HF connectivity in the human brain may be observable with high-speed fMRI, however, the detection sensitivity may depend on the network observed, data acquisition technique, and analysis method.


Subject(s)
Auditory Cortex/physiology , Brain Mapping/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Adult , Auditory Cortex/diagnostic imaging , Female , Humans , Male , Middle Aged , Nerve Net/diagnostic imaging , Rest , Young Adult
14.
PLoS One ; 12(5): e0178409, 2017.
Article in English | MEDLINE | ID: mdl-28552957

ABSTRACT

PURPOSE: Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. MATERIALS AND METHODS: The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years) and 13 patients with epilepsy (8 males, age range 21-67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). RESULTS: RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG recorded during high-speed fMRI and during conventional EPI (p = 0.78). Residual ballistocardiographic artifacts resulted in 58% of EEG data being rated as poor quality. CONCLUSION: This study demonstrates that high-density EEG can be safely implemented in conjunction with high-speed fMRI and that high-speed fMRI does not adversely affect EEG data quality. However, the deterioration of the EEG quality due to residual ballistocardiographic artifacts remains a significant constraint for routine clinical applications of concurrent EEG-fMRI.


Subject(s)
Electroencephalography/methods , Epilepsy/physiopathology , Magnetic Resonance Imaging/methods , Adolescent , Adult , Aged , Case-Control Studies , Electroencephalography/standards , Epilepsy/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging/standards , Male , Middle Aged , Young Adult
15.
Neuropsychopharmacology ; 42(12): 2414-2422, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28409563

ABSTRACT

Cognitive-behavioral therapy (CBT) is effective for pediatric obsessive-compulsive disorder (OCD), but non-response is common. Brain glutamate (Glu) signaling may contribute to OCD pathophysiology and moderate CBT outcomes. We assessed whether Glu measured with magnetic resonance spectroscopy (MRS) was associated with OCD and/or CBT response. Youths aged 7-17 years with DSM-IV OCD and typically developing controls underwent 3 T proton echo-planar spectroscopic imaging (PEPSI) MRS scans of pregenual anterior cingulate cortex (pACC) and ventral posterior cingulate cortex (vPCC)-regions possibly affected by OCD-at baseline. Controls returned for re-scan after 8 weeks. OCD youth-in a randomized rater-blinded trial-were re-scanned after 12-14 weeks of CBT or after 8 weeks of minimal-contact waitlist; waitlist participants underwent a third scan after crossover to 12-14 weeks of CBT. Forty-nine children with OCD (mean age 12.2±2.9 years) and 29 controls (13.2±2.2 years) provided at least one MRS scan. At baseline, Glu did not differ significantly between OCD and controls in pACC or vPCC. Within controls, Glu was stable from scan-to-scan. Within OCD subjects, a treatment-by-scan interaction (p=0.034) was observed, driven by pACC Glu dropping 19.5% from scan-to-scan for patients randomized to CBT, with minor increases (3.8%) for waitlist participants. The combined OCD participants (CBT-only plus waitlist-CBT) also showed a 16.2% (p=0.004) post-CBT decrease in pACC Glu. In the combined OCD group, within vPCC, lower pre-CBT Glu predicted greater post-CBT improvement in symptoms (CY-BOCS; r=0.81, p=0.00025). Glu may be involved in the pathophysiology of OCD and may moderate response to CBT.


Subject(s)
Cognitive Behavioral Therapy/trends , Glutamic Acid/metabolism , Obsessive-Compulsive Disorder/metabolism , Obsessive-Compulsive Disorder/therapy , Adolescent , Child , Cognitive Behavioral Therapy/methods , Cross-Over Studies , Female , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/trends , Magnetic Resonance Spectroscopy/methods , Male , Obsessive-Compulsive Disorder/diagnostic imaging , Treatment Outcome , Waiting Lists
16.
Magn Reson Med ; 78(4): 1246-1256, 2017 10.
Article in English | MEDLINE | ID: mdl-27791287

ABSTRACT

PURPOSE: We developed diffusion tensor spectroscopic imaging (DTSI), based on proton-echo-planar-spectroscopic imaging (PEPSI), and evaluated the feasibility of mapping brain metabolite diffusion in adults and children. METHODS: PRESS prelocalized DTSI at 3 Tesla (T) was performed using navigator-based correction of movement-related phase errors and cardiac gating with compensation for repetition time (TR) related variability in T1 saturation. Mean diffusivity (MD) and fractional anisotropy (FA) of total N-acetyl-aspartate (tNAA), total creatine (tCr), and total choline (tCho) were measured in eight adults (17-60 years) and 10 children (3-24 months) using bmax = 1734 s/mm2 , 1 cc and 4.5 cc voxel sizes, with nominal scan times of 17 min and 8:24 min. Residual movement-related phase encoding ghosting (PEG) was used as a regressor across scans to correct overestimation of MD. RESULTS: After correction for PEG, metabolite slice-averaged MD estimated at 20% PEG were lower (P < 0.042) for adults (0.17/0.20/0.18 × 10-3 mm2 /s) than for children (0.26/0.27/0.24 × 10-3 mm2 /s). Extrapolated to 0% PEG, the MD estimates decreased further (0.09/0.11/0.11 × 10-3 mm2 /s versus 0.15/0.16/0.15 × 10-3 mm2 /s). Slice-averaged FA of tNAA (P = 0.049), tCr (P = 0.067), and tCho (P = 0.003) were higher in children. CONCLUSION: This high-speed DTSI approach with PEG regression allows for estimation of metabolite MD and FA with improved tolerance to movement. Our preliminary data suggesting age-related changes support DTSI as a sensitive technique for investigating intracellular markers of biological processes. Magn Reson Med 78:1246-1256, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging/methods , Adolescent , Adult , Child, Preschool , Female , Humans , Image Processing, Computer-Assisted , Infant , Male , Middle Aged , Phantoms, Imaging , Young Adult
17.
Front Hum Neurosci ; 10: 183, 2016.
Article in English | MEDLINE | ID: mdl-27199706

ABSTRACT

Within the field of functional magnetic resonance imaging (fMRI) neurofeedback, most studies provide subjects with instructions or suggest strategies to regulate a particular brain area, while other neuro-/biofeedback approaches often do not. This study is the first to investigate the hypothesis that subjects are able to utilize fMRI neurofeedback to learn to differentially modulate the fMRI signal from the bilateral amygdala congruent with the prescribed regulation direction without an instructed or suggested strategy and apply what they learned even when feedback is no longer available. Thirty-two subjects were included in the analysis. Data were collected at 3 Tesla using blood oxygenation level dependent (BOLD)-sensitivity optimized multi-echo EPI. Based on the mean contrast between up- and down-regulation in the amygdala in a post-training scan without feedback following three neurofeedback sessions, subjects were able to regulate their amygdala congruent with the prescribed directions with a moderate effect size of Cohen's d = 0.43 (95% conf. int. 0.23-0.64). This effect size would be reduced, however, through stricter exclusion criteria for subjects that show alterations in respiration. Regulation capacity was positively correlated with subjective arousal ratings and negatively correlated with agreeableness and susceptibility to anger. A learning effect over the training sessions was only observed with end-of-block feedback (EoBF) but not with continuous feedback (trend). The results confirm the above hypothesis. Further studies are needed to compare effect sizes of regulation capacity for approaches with and without instructed strategies.

18.
Radiology ; 270(3): 658-79, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24568703

ABSTRACT

A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.


Subject(s)
Biomarkers/metabolism , Central Nervous System Diseases/diagnosis , Magnetic Resonance Spectroscopy/methods , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/pathology , Humans
19.
Front Hum Neurosci ; 7: 479, 2013.
Article in English | MEDLINE | ID: mdl-23986677

ABSTRACT

We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-based connectivity analysis (SBCA) that combines sliding-window correlation analysis with meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such as movement, and CSF and white matter signal changes, and enables real-time monitoring of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malformations, and detection of abnormal resting-state connectivity in epilepsy. In patients with motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex compared with more diffuse activation in task-based fMRI. The fast acquisition speed of MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed distinct regional differences in pulsation amplitude and waveform, elevated signal pulsation in patients with arterio-venous malformations and a trend toward reduced pulsatility in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in cortical gray matter may carry important functional information that distinguishes healthy from diseased tissue vasculature. This novel fMRI methodology is particularly promising for mapping eloquent cortex in patients with neurological disease, having variable degree of cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular pulsatility for clinical and neuroscience research applications.

20.
Magn Reson Imaging ; 31(2): 247-61, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22902471

ABSTRACT

In previous works, boosting aggregation of classifier outputs from discrete brain areas has been demonstrated to reduce dimensionality and improve the robustness and accuracy of functional magnetic resonance imaging (fMRI) classification. However, dimensionality reduction and classification of mixed activation patterns of multiple classes remain challenging. In the present study, the goals were (a) to reduce dimensionality by combining feature reduction at the voxel level and backward elimination of optimally aggregated classifiers at the region level, (b) to compare region selection for spatially aggregated classification using boosting and partial least squares regression methods and (c) to resolve mixed activation patterns using probabilistic prediction of individual tasks. Brain activation maps from interleaved visual, motor, auditory and cognitive tasks were segmented into 144 functional regions. Feature selection reduced the number of feature voxels by more than 50%, leaving 95 regions. The two aggregation approaches further reduced the number of regions to 30, resulting in more than 75% reduction of classification time and misclassification rates of less than 3%. Boosting and partial least squares (PLS) were compared to select the most discriminative and the most task correlated regions, respectively. Successful task prediction in mixed activation patterns was feasible within the first block of task activation in real-time fMRI experiments. This methodology is suitable for sparsifying activation patterns in real-time fMRI and for neurofeedback from distributed networks of brain activation.


Subject(s)
Brain/pathology , Magnetic Resonance Imaging/methods , Algorithms , Brain Mapping/methods , Humans , Image Processing, Computer-Assisted/methods , Least-Squares Analysis , Models, Statistical , Normal Distribution , Pattern Recognition, Automated/methods , Probability , Regression Analysis , Reproducibility of Results , Retrospective Studies , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL