Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(7): e2215230120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36749722

ABSTRACT

The dorsal (DS) and ventral striatum (VS) receive dopaminergic projections that control motor functions and reward-related behavior. It remains poorly understood how dopamine release dynamics across different temporal scales in these regions are coupled to behavioral outcomes. Here, we employ the dopamine sensor dLight1.3b together with multiregion fiber photometry and machine learning-based analysis to decode dopamine dynamics across the striatum during self-paced exploratory behavior in mice. Our data show a striking coordination of rapidly fluctuating signal in the DS, carrying information across dopamine levels, with a slower signal in the VS, consisting mainly of slow-paced transients. Importantly, these release dynamics correlated with discrete behavioral motifs, such as turns, running, and grooming on a subsecond-to-minute time scale. Disruption of dopamine dynamics with cocaine caused randomization of action selection sequencing and disturbance of DS-VS coordination. The data suggest that distinct dopamine dynamics of DS and VS jointly encode behavioral sequences during unconstrained activity with DS modulating the stringing together of actions and VS the signal to initiate and sustain the selected action.


Subject(s)
Cocaine , Ventral Striatum , Mice , Animals , Dopamine , Reward
2.
JCI Insight ; 6(18)2021 09 22.
Article in English | MEDLINE | ID: mdl-34375312

ABSTRACT

Dysfunctional dopaminergic neurotransmission is central to movement disorders and mental diseases. The dopamine transporter (DAT) regulates extracellular dopamine levels, but the genetic and mechanistic link between DAT function and dopamine-related pathologies is not clear. Particularly, the pathophysiological significance of monoallelic missense mutations in DAT is unknown. Here, we use clinical information, neuroimaging, and large-scale exome-sequencing data to uncover the occurrence and phenotypic spectrum of a DAT coding variant, DAT-K619N, which localizes to the critical C-terminal PSD-95/Discs-large/ZO-1 homology-binding motif of human DAT (hDAT). We identified the rare but recurrent hDAT-K619N variant in exome-sequenced samples of patients with neuropsychiatric diseases and a patient with early-onset neurodegenerative parkinsonism and comorbid neuropsychiatric disease. In cell cultures, hDAT-K619N displayed reduced uptake capacity, decreased surface expression, and accelerated turnover. Unilateral expression in mouse nigrostriatal neurons revealed differential effects of hDAT-K619N and hDAT-WT on dopamine-directed behaviors, and hDAT-K619N expression in Drosophila led to impairments in dopamine transmission with accompanying hyperlocomotion and age-dependent disturbances of the negative geotactic response. Moreover, cellular studies and viral expression of hDAT-K619N in mice demonstrated a dominant-negative effect of the hDAT-K619N mutant. Summarized, our results suggest that hDAT-K619N can effectuate dopamine dysfunction of pathological relevance in a dominant-negative manner.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Mental Disorders/genetics , Neurons/metabolism , Parkinsonian Disorders/genetics , Adult , Animals , Behavior, Animal , Biological Transport , Cells, Cultured , Databases, Genetic , Drosophila , Exome , Female , Humans , Hypokinesia/diagnostic imaging , Hypokinesia/genetics , Hypokinesia/metabolism , Male , Mental Disorders/metabolism , Mesencephalon/metabolism , Mice , Middle Aged , Motor Activity/genetics , Mutation , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/metabolism , Phenotype , Synaptic Transmission , Tomography, Emission-Computed, Single-Photon , Transfection
3.
Epigenomics ; 10(6): 689-694, 2018 06.
Article in English | MEDLINE | ID: mdl-29979107

ABSTRACT

AIM: Epigenetic analyses of sperm require pure samples devoid of diploid cell contamination. We sought to determine the efficacy of somatic cell lysis buffer (SCLB) treatment to purify mouse epididymis sperm samples. MATERIALS & METHODS: Sperm cell concentration, sperm purity, small RNA contents and sperm and somatic marker gene expression was compared in SCLB-treated sperm samples and two different control conditions. RESULTS: The SCLB condition as well as the control condition mimicking the additional pelleting and re-suspension steps resulted in substantial cell loss without evidence of enhanced purification of sperm cells as compared with epididymis-derived sperm samples that were not manipulated further. CONCLUSION: Molecular analyses focused on sperm cells require high levels of purity in order to avoid high-confounding RNA and cytosolic contributions of nonsperm cells. Our findings advocate gradient or cell sorting-based purification approaches where pure samples are required for sensitive molecular assays.


Subject(s)
Cell Separation/methods , Sperm Retrieval , Spermatozoa , Animals , Buffers , Epigenesis, Genetic , Gene Expression , Male , Mice, Inbred C57BL , Microscopy, Confocal , Optical Imaging , RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...