Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Anim Sci Biotechnol ; 10: 83, 2019.
Article in English | MEDLINE | ID: mdl-31636904

ABSTRACT

BACKGROUND: Commercial pre-weaning diets are formulated to be highly digestible and nutrient-dense and contain low levels of dietary fibre. In contrast, pigs in a natural setting are manipulating fibre-rich plant material from a young age. Moreover, dietary fibre affects gastrointestinal tract (GIT) development and health in older pigs. We hypothesised that supplemental diets that contain vegetal fibres are accelerating GIT development in suckling piglets in terms of size and functionality. From d 2 of life, sow-suckled piglets had access to a low fibre diet (CON), a diet with a fermentable long-chain arabinoxylan (lc-AXOS), a diet with a largely non-fermentable purified cellulose (CELL), or a diet containing both fibres. During the initial 2 weeks, the control diet was a high-density milk replacer, followed by a dry and highly digestible creep meal. Upon weaning at 25 d, 15 piglets from each treatment group, identified as eaters and originating from six or seven litters, were sacrificed for post-mortem examination of GIT morphology, small intestinal permeability and metabolic profile of the digesta. The microbiota composition of the mid-colon was evaluated in a sub-set of ten piglets. RESULTS: No major statistical interactions between the fibre sources were observed. Piglets consumed the fibre-containing milk supplements and creep diets well. Stomach size and small intestinal permeability was not affected. Large intestinal fill was increased with lc-AXOS only, while relative large intestinal weight was increased with both fibre sources (P < 0.050). Also, CELL decreased ileal pH and tended to increase ileal DM content compared to CON (P < 0.050). Moreover, the concentration of volatile fatty acids was increased in the caecum (P < 0.100) and mid-colon (P < 0.050) by addition of CELL. lc-AXOS only stimulated caecal propionate (P < 0.050). The microbiota composition showed a high individual variation and limited dietary impact. Nonetheless, CELL induced minor shifts in specific genera, with notable reductions of Escherichia-Shigella. CONCLUSIONS: Adding dietary fibres to the supplemental diet of suckling piglets altered large intestinal morphology but not small intestinal permeability. Moreover, dietary fibre showed effects on fermentation and modest changes of microbial populations in the hindgut, with more prominent effects from the low-fermentable cellulose.

2.
Benef Microbes ; 6(6): 849-60, 2015.
Article in English | MEDLINE | ID: mdl-26193074

ABSTRACT

Long-chain arabinoxylans (LC-AX) are degraded in the colon by intestinal bacteria possessing AX-degrading enzymes, such as bifidobacteria. Enzymatic activity of intestinal bacterial might vary depending on the composition of the gut microbiota. To compare the enzymatic activities of the bacterial gut communities of two healthy individuals (donors D1 and D2), these bacterial communities were inoculated into in vitro model M-SHIME(®). Differences in xylanase activities and denaturing gradient gel electrophoresis profiles, in particular a DNA-band corresponding with Bifidobacterium longum, were found in the proximal colon vessel. 16S rRNA gene sequencing analysis demonstrated the presence of two different B. longum species in these bacterial communities, showing 99% gene sequence similarity with B. longum NCC2705 and B. longum. subsp. longum KACC 91563, respectively, further referred to as B. longum D1 and B. longum D2. When grown on LC-AX as the sole added energy source, B. longum D2 displayed significantly higher activities of ß-xylanase (5.3-fold), ß-xylosidase (2.9-fold), and α-arabinofuranosidase (1.5-fold), respectively, compared to B. longum D1. When B. longum D2 was inoculated in the M-SHIME, inoculated with the bacterial gut communities of the individual with low AX-degrading enzyme activities, the ß-xylanase activity increased (1.5-fold) in the proximal vessel. We demonstrated the presence of differences in LC-AX degrading enzyme activities of the bacterial gut communities of two individuals in the in vitro M-SHIME model, which could be linked to the presence of a potent AX-degrading B. longum (D2) strain.


Subject(s)
Bifidobacterium/metabolism , Colon/chemistry , Colon/microbiology , Gastrointestinal Microbiome , Xylans/metabolism , Bifidobacterium/classification , Bifidobacterium/genetics , Bifidobacterium/growth & development , Biotransformation , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Glycoside Hydrolases/analysis , Healthy Volunteers , Humans , Models, Theoretical , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
J Nutr Health Aging ; 19(1): 77-86, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25560820

ABSTRACT

OBJECTIVES: Osteoporosis is a skeletal disorder characterized by impaired bone turnover and compromised bone strength, thereby predisposing to increased risk of fracture. Preclinical research has shown that compounds produced by the olive tree (Olea europaea), may protect from bone loss, by increasing osteoblast activity at the expense of adipocyte formation. The aim of this exploratory study was to obtain a first insight on the effect of intake of an olive extract on bone turnover in postmenopausal women with decreased bone mass (osteopenia). DESIGN AND SETTING: For that, a double blind, placebo-controlled study was performed in which participants were randomly allocated to either treatment or placebo groups. PARTICIPANTS: 64 osteopenic patients, with a mean bone mineral density (BMD) T-score between -1.5 and -2.5 in the lumbar spine (L2-L4) were included in the study. INTERVENTION AND MEASUREMENTS: PARTICIPANTS received for 12 months daily either 250 mg/day of olive extract and 1000 mg Ca (treatment) or 1000 mg Ca alone (placebo). Primary endpoints consisted of evaluation of bone turnover markers. Secondary endpoints included BMD measurements and blood lipid profiles. RESULTS: After 12 months, the levels of the pro-osteoblastic marker osteocalcin were found to significantly increase in the treatment group as compared to placebo. Simultaneously, BMD decreased in the placebo group, while remaining stable in the treatment group. In addition, improved lipid profiles were observed, with significant decrease in total- and LDL-cholesterol in the treatment group. CONCLUSION: This exploratory study supports preclinical observations and warrants further research by showing that a specific olive polyphenol extract (Bonolive®) affects serum osteocalcin levels and may stabilize lumbar spine BMD. Moreover, the improved blood lipid profiles suggest additional health benefits associated to the intake of the olive polyphenol extract.


Subject(s)
Bone Diseases, Metabolic/blood , Lipids/blood , Olea/chemistry , Osteocalcin/blood , Phytotherapy , Polyphenols/pharmacology , Postmenopause/blood , Aged , Biomarkers/blood , Bone Density/drug effects , Bone Diseases, Metabolic/drug therapy , Bone Diseases, Metabolic/prevention & control , Bone and Bones/drug effects , Bone and Bones/metabolism , Double-Blind Method , Female , Humans , Iridoid Glucosides , Iridoids/administration & dosage , Iridoids/pharmacology , Lumbar Vertebrae/drug effects , Middle Aged , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/prevention & control , Placebos , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/administration & dosage , Polyphenols/chemistry , Time Factors
4.
Eur J Nutr ; 53(4): 1015-27, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24158653

ABSTRACT

PURPOSE: Preclinical studies suggest a potential protective effect of oleuropein in osteoporosis, and one of the proposed mechanisms is the modulation of the oxidative stress. Oleuropein bioavailability and its effect on antioxidant status in pre- and postmenopausal women are unknown. The aim of the present study was to investigate the oral bioavailability of an olive leaf extract rich in oleuropein (40 %) and its effect on antioxidant status in postmenopausal women compared to premenopausal women. METHODS: Premenopausal (n = 8) and postmenopausal women (n = 8) received 250 mg of olive leaf extract, blood samples (t = 0, 1, 2, 3, 4, 6, 8, 12, 16 and 24 h) were taken, and 24-h urine divided into five fractions was collected. Olive-leaf-extract-derived metabolites were analyzed in plasma and urine by HPLC-ESI-QTOF and UPLC-ESI-QqQ, and pharmacokinetics parameters were determined. Ferric reducing antioxidant ability and malondialdehyde levels were measured in plasma. RESULTS: Plasma levels of hydroxytyrosol glucuronide, hydroxytyrosol sulfate, oleuropein aglycon glucuronide and oleuropein aglycon derivative 1 were higher in postmenopausal women. MDA levels were significantly decreased (32%) in postmenopausal women and inversely correlated with hydroxytyrosol sulfate levels. Postmenopausal women excreted less sulfated metabolites in urine than premenopausal women. CONCLUSIONS: Our results suggest that postmenopausal women could be a target population for the intake of olive phenolics in order to prevent age-related and oxidative stress-related processes such as osteoporosis.


Subject(s)
Antioxidants/metabolism , Iridoids/pharmacokinetics , Olea/chemistry , Phenols/pharmacokinetics , Plant Extracts/pharmacokinetics , Plant Leaves/chemistry , Adolescent , Adult , Aged , Biological Availability , Chromatography, High Pressure Liquid , Female , Humans , Iridoid Glucosides , Iridoids/administration & dosage , Iridoids/blood , Iridoids/urine , Malondialdehyde/blood , Middle Aged , Oxidative Stress/drug effects , Phenols/blood , Phenols/urine , Plant Extracts/administration & dosage , Postmenopause/blood , Postmenopause/urine , Premenopause/blood , Premenopause/urine , Young Adult
5.
J Agric Food Chem ; 60(45): 11331-42, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23072624

ABSTRACT

The colonic microbial degradation of a polyphenol-rich black tea extract (BTE) and red wine/grape juice extract (RWGE) was compared in a five-stage in vitro gastrointestinal model (TWINSHIME). Microbial metabolism of BTE and RWGE polyphenols in the TWINSHIME was studied subsequently in single- and continuous-dose experiments. A combination of liquid or gas chromatography with mass spectrometry (LC-MS or GC-MS) and NMR-based metabolic profiling was used to measure selected parent polyphenols, their microbial degradation into phenolic acids, and the production of short-chain fatty acids (SCFAs) in different colon compartments. Acetate production was increased by continuous feeding of BTE but not RWGE. During RWGE feeding, gallic acid and 4-hydroxyphenylpropionic acid remained elevated throughout the colon, while during BTE feeding, they were consumed in the distal colon, while 3-phenylpropionic acid was strongly produced. Gut microbial production of phenolics and SCFAs is dependent on colon location and polyphenol source, which may influence potential health benefits.


Subject(s)
Bacteria/metabolism , Camellia sinensis/metabolism , Colon/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Plant Extracts/metabolism , Polyphenols/metabolism , Vitis/metabolism , Wine/analysis , Camellia sinensis/chemistry , Colon/microbiology , Humans , Metagenome , Models, Biological , Plant Extracts/analysis , Species Specificity , Tea/metabolism , Vitis/chemistry
6.
Benef Microbes ; 2(4): 305-18, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22146690

ABSTRACT

The prevalence of obesity is continuously growing and has reached epidemic proportions. It is clear that current methods to combat obesity are not effective enough to reduce the problem. Therefore, further investigation is needed to develop new strategies. Recent research pointed out a potential role of the microbial community associated to the human host in controlling and influencing the energy homeostasis. According to the concept of Gastrointestinal Resource Management, this microbiota and its metabolic potential can be steered with the aim of improving host health. This review therefore focuses on the modulation of the intestinal microbiota through prebiotics with the aim to control several aspects of metabolic homeostasis. In a first part, the importance of host-microbe cross-talk at the intestinal epithelium is discussed. Yet, energy metabolism, which includes both lipid and glucose metabolism, is also regulated by several key organs including the adipose tissue, brain, liver, muscles, pancreas and gut. Therefore, in a second part, we will discuss the microbial factors that are involved in the communication between these different tissues, and their potential management. Finally, we will give some future prospects of the use of prebiotics in an individualised treatment of metabolic disorders.


Subject(s)
Energy Metabolism , Homeostasis , Intestinal Mucosa/microbiology , Intestinal Mucosa/physiology , Metagenome/drug effects , Prebiotics , Epithelial Cells/microbiology , Epithelial Cells/physiology , Humans
7.
Eur J Pharm Biopharm ; 77(2): 297-305, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21168487

ABSTRACT

Different ethylene vinyl acetate grades (EVA9, EVA15, EVA28 and EVA40 having a VA content of 9%, 15%, 28% and 40%, respectively) were characterized via differential scanning calorimetry. Glass transition temperature (T(g)), polymer crystallinity, melting point and polymer flexibility were positively influenced by the vinyl acetate content. The processability of EVA-based formulations produced by means of hot-melt extrusion (2mm die) was evaluated in function of VA content, extrusion temperature (60-140°C) and metoprolol tartrate (MPT, used as model drug) concentration (10-60%). Matrices containing 50% MPT resulted in smooth-surfaced extrudates, whereas at 60% drug content severe surface defects (shark skinning) were observed. Drug release from EVA/MPT matrices (50/50, w/w) was affected by the EVA grades: 90% after 24h for EVA15 and 28, while EVA9 and EVA40 formulations released 80% and 60%, respectively. Drug release also depended on drug loading and extrusion temperature. For all systems, the total matrix porosity (measured by X-ray tomography) was decreased after dissolution due to elastic rearrangement of the polymer. However, the largest porosity reduction was observed for EVA40 matrices as partial melting of the structure (melt onset temperature: 34.7°C) also contributed (thereby reducing the drug release pathway and yielding the lowest release rate from EVA40 formulations). The Simulator of the Human Intestinal Microbial Ecosystem (SHIME) used to evaluate the stability of EVA during gastrointestinal transit showed that EVA was not modified during GI transit, nor did it affect the GI ecosystem following oral administration.


Subject(s)
Antihypertensive Agents/administration & dosage , Delayed-Action Preparations , Metoprolol/administration & dosage , Polyvinyls , Administration, Oral , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacokinetics , Delayed-Action Preparations/chemistry , Drug Carriers , Drug Compounding , Drug Stability , Gastrointestinal Tract/metabolism , Hot Temperature , Humans , Metoprolol/chemistry , Metoprolol/pharmacokinetics , Polymers/chemistry , Polyvinyls/chemistry , Porosity , Solubility , Transition Temperature
8.
Int J Food Microbiol ; 141(1-2): 97-103, 2010 Jun 30.
Article in English | MEDLINE | ID: mdl-20452073

ABSTRACT

In this work, chocolate has been evaluated as a potential protective carrier for oral delivery of a microencapsulated mixture of Lactobacillus helveticus CNCM I-1722 and Bifidobacterium longum CNCM I-3470. A sequential in vitro setup was used to evaluate the protection of the probiotics during passage through the stomach and small intestine, when embedded in dark and milk chocolate or liquid milk. Both chocolates offered superior protection (91% and 80% survival in milk chocolate for L. helveticus and B. longum, respectively compared to 20% and 31% found in milk). To simulate long-term administration, the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) was used. Plate counts, Denaturing Gradient Gel Electrophoresis and quantitative PCR showed that the two probiotics successfully reached the simulated colon compartments. This led to an increase in lactobacilli and bifidobacteria counts and the appearance of additional species in the fingerprints. These data indicate that the coating of the probiotics in chocolate is an excellent solution to protect them from environmental stress conditions and for optimal delivery. The simulation with our gastrointestinal model showed that the formulation of a probiotic strain in a specific food matrix could offer superior protection for the delivery of the bacterium into the colon. The chocolate example could act as a trigger for new research to identify new balanced matrices.


Subject(s)
Bifidobacterium , Cacao/microbiology , Gastrointestinal Tract/microbiology , Lactobacillus helveticus , Probiotics , Colony Count, Microbial , Drug Carriers , Drug Compounding , Stress, Physiological
9.
Int J Food Microbiol ; 139(3): 168-76, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20362351

ABSTRACT

The use of prebiotics is a possible strategy to manage and steer the complex gut microbial community towards a health-promoting composition (Gastrointestinal Resource Management). In this study, the Simulator of the Human Intestinal Microbial Ecosystem was used to investigate the effects of two commercially-available plant polysaccharide supplements on the structure, composition and metabolism of an in vitro cultured colon microbial community. Microbial analyses showed both a bifidogenic (up to +1.3 log cfu/mL) and a lactobacillogenic (up to +0.9 log cfu/mL) effect during treatment with the dietary supplements. Quantitative PCR confirmed that the increase of Bifidobacteria spp. was statistically significant (P<0.05) in all of the colon compartments and showed a significant increase of the bacteroides-prevotella group concentration (+0.6 log cells/ml) in the compartment simulating the proximal colon. Denaturant gradient gel electrophoresis analyses and a relative ecological interpretation, in combination with sugar and short-chain fatty acids quantification, provided evidence of a positive effect of both the tested products. Overall, the treatment period was associated with (i) good and selective fermentability of the polysaccharide supplements along the entire colon; (ii) positive and selective bifidogenic effect; (iii) the possibility of enhancing species belonging to Bacteroidetes, a phylum recently associated with body weight management.


Subject(s)
Dietary Supplements , Gastrointestinal Tract/microbiology , Polysaccharides/chemistry , Prebiotics , Bacteroides/growth & development , Bacteroides/isolation & purification , Bifidobacterium/growth & development , Bifidobacterium/isolation & purification , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Fermentation , Galactans/chemistry , Humans , Lactobacillaceae/growth & development , Lactobacillaceae/isolation & purification , Plant Gums/chemistry , Plants/chemistry
10.
Gut ; 58(8): 1091-103, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19240062

ABSTRACT

BACKGROUND AND AIMS: Obese and diabetic mice display enhanced intestinal permeability and metabolic endotoxaemia that participate in the occurrence of metabolic disorders. Our recent data support the idea that a selective increase of Bifidobacterium spp. reduces the impact of high-fat diet-induced metabolic endotoxaemia and inflammatory disorders. Here, we hypothesised that prebiotic modulation of gut microbiota lowers intestinal permeability, by a mechanism involving glucagon-like peptide-2 (GLP-2) thereby improving inflammation and metabolic disorders during obesity and diabetes. METHODS: Study 1: ob/ob mice (Ob-CT) were treated with either prebiotic (Ob-Pre) or non-prebiotic carbohydrates as control (Ob-Cell). Study 2: Ob-CT and Ob-Pre mice were treated with GLP-2 antagonist or saline. Study 3: Ob-CT mice were treated with a GLP-2 agonist or saline. We assessed changes in the gut microbiota, intestinal permeability, gut peptides, intestinal epithelial tight-junction proteins ZO-1 and occludin (qPCR and immunohistochemistry), hepatic and systemic inflammation. RESULTS: Prebiotic-treated mice exhibited a lower plasma lipopolysaccharide (LPS) and cytokines, and a decreased hepatic expression of inflammatory and oxidative stress markers. This decreased inflammatory tone was associated with a lower intestinal permeability and improved tight-junction integrity compared to controls. Prebiotic increased the endogenous intestinotrophic proglucagon-derived peptide (GLP-2) production whereas the GLP-2 antagonist abolished most of the prebiotic effects. Finally, pharmacological GLP-2 treatment decreased gut permeability, systemic and hepatic inflammatory phenotype associated with obesity to a similar extent as that observed following prebiotic-induced changes in gut microbiota. CONCLUSION: We found that a selective gut microbiota change controls and increases endogenous GLP-2 production, and consequently improves gut barrier functions by a GLP-2-dependent mechanism, contributing to the improvement of gut barrier functions during obesity and diabetes.


Subject(s)
Cecum/microbiology , Glucagon-Like Peptide 2/physiology , Inflammation/prevention & control , Obesity/complications , Probiotics/therapeutic use , Adiposity/drug effects , Adiposity/physiology , Animals , Bacteria/isolation & purification , Cecum/physiopathology , Endotoxemia/etiology , Endotoxemia/prevention & control , Glucagon-Like Peptide 2/agonists , Glucagon-Like Peptide 2/antagonists & inhibitors , Hepatitis/etiology , Hepatitis/prevention & control , Inflammation/etiology , Inflammation/microbiology , Intestinal Absorption/drug effects , Intestinal Absorption/physiology , Membrane Proteins/metabolism , Mice , Mice, Obese , Obesity/microbiology , Obesity/physiopathology , Occludin , Oxidative Stress/drug effects , Oxidative Stress/physiology , Permeability , Phosphoproteins/metabolism , Proglucagon/genetics , RNA, Messenger/genetics , Tight Junctions/metabolism , Zonula Occludens-1 Protein
11.
Anticancer Agents Med Chem ; 8(2): 171-85, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18288920

ABSTRACT

Because invasion is, either directly or via metastasis formation, the main cause of death in cancer patients, development of efficient anti-invasive agents is an important research challenge. We have established a screening program for potentially anti-invasive compounds. The assay is based on organotypic confronting cultures between human invasive cancer cells and a fragment of normal tissue in three dimensions. Anti-invasive agents appeared to be heterogeneous with regard to their chemical nature, but plant alkaloids, polyphenolics and some of their synthetic congeners were well represented. Even within this group, active compounds were quite diverse: (+)-catechin, tangeretin, xanthohumol and other prenylated chalcones, 3,7-dimethoxyflavone, a pyrazole derivative, an isoxazolylcoumarin and a prenylated desoxybenzoin. The data gathered in this system are now applied in two projects. Firstly, structure-activity relationships are explored with computer models using an artificial neural network approach, based on quantitative structural descriptors. The aim of this study is the prediction and design of optimally efficient anti-invasive compounds. Secondly, the metabolism of orally ingested plant polyphenolics by colonic bacteria is studied in a simulator of the human intestinal microbial ecosystem (SHIME) and in human intervention trials. This method should provide information on the final bioavailability of the active compounds in the human body, with regard to microbial metabolism, and the feasibility of designing pre- or probiotics that increase the generation of active principles for absorption in the gastro-intestinal tract. The final and global aim of all these studies is to predict, synthesize and apply in vivo molecules with an optimal anti-invasive, and hence an anti-metastatic activity against cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Flavonoids/pharmacology , Neoplasm Invasiveness/prevention & control , Neoplasm Metastasis/prevention & control , Neoplasms/drug therapy , Phenols/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/metabolism , Cell Proliferation/drug effects , Flavonoids/chemistry , Flavonoids/metabolism , Humans , Molecular Structure , Phenols/chemistry , Phenols/metabolism , Plants/chemistry , Polyphenols
12.
J Appl Microbiol ; 102(2): 452-60, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17241351

ABSTRACT

AIMS: We assessed to what extent fructans of different degrees of polymerization (DP) differ in their prebiotic effectiveness towards in vitro microbial communities from the proximal and distal colon. METHODS AND RESULTS: Two short chain fructans - oligofructose (DP 2-20) and inulin (DP 3-60) - were administered to the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) at 2.5 g day(-1). The influence of fructan addition towards fermentation activity and microbial community composition from the different SHIME colon compartments were evaluated. Both fructans exerted prebiotic effects with significantly higher butyrate and propionate production and stimulation of lactic acid-producing bacteria. Compared with oligofructose, it was noted that it took more time before significant effects from inulin addition were observed. Yet, the higher short-chain fatty acid production and lower proteolytic activity showed that the prebiotic effects from inulin were more pronounced than oligofructose. Also, the bifidogenic effects from inulin vs oligofructose were higher in the distal colon compartments and this effect was prolonged in the distal colon once the addition was stopped. CONCLUSIONS: Inulin has more pronounced prebiotic effects than oligofructose towards both fermentation activity and bacterial community composition in the SHIME model. SIGNIFICANCE AND IMPACT OF THE STUDY: Its slower fermentation rate and higher prebiotic potency makes inulin a more interesting compound than oligofructose to beneficially influence the microbial community from both the proximal and distal colon regions.


Subject(s)
Colon/microbiology , Dietary Fiber/pharmacology , Fructans/pharmacology , Probiotics , Bifidobacterium/genetics , Bifidobacterium/physiology , Cichorium intybus , Colon/metabolism , Colony Count, Microbial , DNA Fingerprinting , Fatty Acids, Volatile/analysis , Fermentation , Fructans/chemistry , Humans , Inulin/chemistry , Inulin/pharmacology , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Polymers
13.
Appl Microbiol Biotechnol ; 65(4): 465-72, 2004 Sep.
Article in English | MEDLINE | ID: mdl-14991251

ABSTRACT

A bacteriophage, designated UZ1 and showing lytic activity against a clinically important strain (BE1) of Enterobacter aerogenes was isolated from hospital sewage. The stability and lytic activity against this strain under simulated gastro-intestinal conditions was evaluated. After addition of bacteriophage UZ1 to a liquid feed at gastric pH 2, the phage was immediately inactivated and could not be recovered. However, by use of an antacid to neutralize stomach acidity, no significant changes in phage titer were observed after 2 h incubation at 37 degrees C. After supplementing pancreatic juice and further incubation for 4 h, the phage titer remained stable. The persistence of UZ1 in a mixed microbial ecosystem that was representative for the large intestine was monitored using an in vitro simulation of the human intestinal microbial ecosystem. A pulse administration of bacteriophage UZ1 at a concentration of 10(5) plaque-forming units (PFU)/ml to reactor 3 (which simulates the ascending colon) showed that, in the absence of the host, bacteriophage UZ1 persisted for 13 days in the simulated colon, while the theoretical washout was calculated at 16 days. To assess its lytic activity in an intestinal microbial ecosystem, a green fluorescent protein (gfp)-labeled E. aerogenes BE1 strain was constructed and gfp-specific primers were designed in order to quantify the host strain using real-time PCR. It was observed that bacteriophage UZ1 was able to replicate and showed lytic activity against E. aerogenes BE1/ gfp in an intestinal microbial ecosystem. Indeed, after 17 h a 2 log unit reduction of E. aerogenes BE1/ gfp was measured as compared with the assay without bacteriophage UZ1, while the phage titer increased by 2 log units at an initial multiplicity of infection of 0.07 PFU/colony-forming unit. This is the first report of an in vitro model to study bacteriophage activity in the complex intestinal microbial community.


Subject(s)
Bacteriophages/physiology , Enterobacter aerogenes/virology , Virus Inactivation , Antiviral Agents/pharmacology , Bacteriolysis , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteriophages/ultrastructure , Bile Acids and Salts/pharmacology , DNA, Viral/isolation & purification , DNA, Viral/metabolism , Enterobacter aerogenes/genetics , Enterobacter aerogenes/growth & development , Enterobacter aerogenes/isolation & purification , Genes, Bacterial , Genes, Reporter , Hospitals , Hydrogen-Ion Concentration , Intestines/virology , Models, Biological , Pancreatic Juice/metabolism , Polymerase Chain Reaction , Sewage/virology , Temperature , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...