Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Toxicol Environ Health A ; 87(11): 457-470, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38576186

ABSTRACT

Glutamate is one of the predominant excitatory neurotransmitters released from the central nervous system; however, at high concentrations, this substance may induce excitotoxicity. This phenomenon is involved in numerous neuropathologies. At present, clinically available pharmacotherapeutic agents to counteract glutamatergic excitotoxicity are not completely effective; therefore, research to develop novel compounds is necessary. In this study, the main objective was to determine the pharmacotherapeutic potential of the hydroalcoholic extract of Psidium guajava (PG) in a model of oxidative stress-induced by exposure to glutamate utilizing Danio rerio larvae (zebrafish) as a model. Data showed that treatment with glutamate produced a significant increase in oxidative stress, chromatin damage, apoptosis, and locomotor dysfunction. All these effects were attenuated by pre-treatment with the classical antioxidant N-acetylcysteine (NAC). Treatment with PG inhibited oxidative stress responsible for cellular damage induced by glutamate. However, exposure to PG failed to prevent glutamate-initiated locomotor damage. Our findings suggest that under conditions of oxidative stress, PG can be considered as a promising candidate for treatment of glutamatergic excitotoxicity and consequent neurodegenerative diseases.


Subject(s)
Psidium , Zebrafish , Animals , Glutamates/toxicity , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves
3.
Article in English | MEDLINE | ID: mdl-38373512

ABSTRACT

Prenatal iron (Fe) exposure has been associated with learning and cognitive impairments, which may be linked to oxidative stress resulting from elevated Fe levels and harm to the vulnerable brain. Drosophila melanogaster has contributed to our understanding of molecular mechanisms involved in neurological conditions. This study aims to explore Fe toxicity during D. melanogaster development, assessing oxidative stress and investigating behaviors in flies that are related to neurological conditions in humans. To achieve this goal, flies were exposed to Fe during the developmental period, and biochemical and behavioral analyses were conducted. The results indicated that 20 mM Fe decreased fly hatching by 50 %. At 15 mM, Fe exposure increased lipid peroxidation, and GSH levels decreased starting from 5 mM of Fe. Superoxide Dismutase activity was enhanced at 15 mM, while Glutathione S-Transferase activity was inhibited from 5 mM. Although chronic Fe exposure did not alter acetylcholinesterase (AChE) activity, flies exhibited reduced locomotion, increased grooming, and antisocial behavior from 5 mM of Fe. This research highlights potential Fe toxicity risks during development and underscores the utility of D. melanogaster in unraveling neurological disorders, emphasizing its relevance for future research.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Humans , Drosophila melanogaster/metabolism , Drosophila/metabolism , Iron/toxicity , Acetylcholinesterase/metabolism , Oxidative Stress , Antioxidants/metabolism
4.
J Toxicol Environ Health A ; 87(4): 166-184, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38073470

ABSTRACT

Copper (Cu) is a naturally occurring metal with essential micronutrient properties. However, this metal might also pose increased adverse environmental and health risks due to industrial and agricultural activities. In Brazil, the maximum allowable concentration of Cu in drinking water is 2 mg/L. Despite this standard, the impact of such concentrations on aquatic organisms remains unexplored. This study aimed to evaluate the toxicity of CuSO4 using larval zebrafish at environmentally relevant concentrations. Zebrafish (Danio rerio) larvae at 72 hr post-fertilization (hpf) were exposed to nominal CuSO4 concentrations ranging from 0.16 to 48 mg/L to determine the median lethal concentration (LC50), established at 8.4 mg/L. Subsequently, non-lethal concentrations of 0.16, 0.32, or 1.6 mg/L were selected for assessing CuSO4 -induced toxicity. Morphological parameters, including body length, yolk sac area, and swim bladder area, were adversely affected by CuSO4 exposure, particularly at 1.6 mg/L (3.31 mm ±0.1, 0.192 mm2 ±0.01, and 0.01 mm2 ±0.05, respectively). In contrast, the control group exhibited values of 3.62 mm ±0.09, 0.136 mm2 ±0.013, and 0.3 mm2 ±0.06, respectively. Behavioral assays demonstrated impairments in escape response and swimming capacity, accompanied by increased levels of reactive oxygen species (ROS) and lipid peroxidation. In addition, decreased levels of non-protein thiols and reduced cellular viability were noted. Data demonstrated that exposure to CuSO4 at similar concentrations as those permitted in Brazil for Cu adversely altered morphological, biochemical, and behavioral endpoints in zebrafish larvae. This study suggests that the permissible Cu concentrations in Brazil need to be reevaluated, given the potential enhanced adverse health risks of exposure to environmental metal contamination.


Subject(s)
Copper , Water Pollutants, Chemical , Animals , Copper/toxicity , Zebrafish/physiology , Larva , Brazil , Lethal Dose 50 , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian
5.
Physiol Behav ; 271: 114334, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37595818

ABSTRACT

Sleep disorders are catching attention worldwide as they can induce dyshomeostasis and health issues in all animals, including humans. Circadian rhythms are biological 24-hour cycles that influence physiology and behavior in all living organisms. Sleep is a crucial resting state for survival and is under the control of circadian rhythms. Studies have shown the influence of sleep on various pathological conditions, including metabolic diseases; however, the biological mechanisms involving the circadian clock, sleep, and metabolism regulation are not well understood. In previous work, we standardized a sleep disturbance protocol and, observed that short-time sleep deprivation and sleep-pattern alteration induce homeostatic sleep regulation, locomotor deficits, and increase oxidative stress. Now, we investigated the relationship between these alterations with the circadian clock and energetic metabolism. In this study, we evaluated the expression of the circadian clock and drosophila insulin-like peptides (DILPs) genes and metabolic markers glucose, triglycerides, and glycogen in fruit flies subjected to short-term sleep disruption protocols. The sleep disturbance altered the expression of clock genes and DILPs genes expression, and modulated glucose, triglycerides, and glycogen levels. Moreover, we demonstrated changes in mTor/dFoxo genes, AKT phosphorylation, and dopamine levels in nocturnal light-exposed flies. Thus, our results suggest a connection between clock genes and metabolism disruption as a consequence of sleep disruption, demonstrating the importance of sleep quality in health maintenance.


Subject(s)
Circadian Clocks , Drosophila , Animals , Humans , Sleep/physiology , Circadian Rhythm/physiology , Sleep Deprivation/metabolism , Glucose , Glycogen/metabolism , Gene Expression , Triglycerides , Gene Expression Regulation , Circadian Clocks/genetics
6.
Oxid Med Cell Longev ; 2023: 7222462, 2023.
Article in English | MEDLINE | ID: mdl-37333463

ABSTRACT

Aging is characterized by a functional decline in the physiological functions and organic systems, causing frailty, illness, and death. Ferroptosis is an iron- (Fe-) dependent regulated cell death, which has been implicated in the pathogenesis of several disorders, such as cardiovascular and neurological diseases. The present study investigated behavioral and oxidative stress parameters over the aging of Drosophila melanogaster that, together with augmented Fe levels, indicate the occurrence of ferroptosis. Our work demonstrated that older flies (30-day-old) of both sexes presented impaired locomotion and balance when compared with younger flies (5-day-old). Older flies also produced higher reactive oxygen species (ROS) levels, decreased glutathione levels (GSH), and increased lipid peroxidation. In parallel, Fe levels were augmented in the fly's hemolymph. The GSH depletion with diethyl maleate potentiated the behavioral damage associated with age. Our data demonstrated biochemical effects that characterize the occurrence of ferroptosis over the age of D. melanogaster and reports the involvement of GSH in the age-associated damages, which could be in part attributed to the augmented levels of Fe.


Subject(s)
Drosophila melanogaster , Oxidative Stress , Animals , Male , Female , Drosophila melanogaster/metabolism , Reactive Oxygen Species/pharmacology , Antioxidants/pharmacology , Lipid Peroxidation , Iron/pharmacology , Glutathione/metabolism
7.
Environ Pollut ; 333: 122013, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37369298

ABSTRACT

Mancozeb (MZ) is widely used as a fungicide in Brazil due to its effectiveness in combating fungal infections in plantations. However, its toxicity to non-target organisms, including aquatic organisms, has been reported in the literature. Recently, Brazilian legislation was updated to allow a concentration of 8 µg/L of MZ in drinking water (Ordinance GM/MS nº 888, of May 4, 2021). However, the safety of this concentration for aquatic organisms has not yet been put to the test. To address this gap, we conducted a study using zebrafish (Danio rerio) embryos at 4 hpf exposed to MZ at the concentration allowed by law, as well as slightly higher sublethal concentrations (24, 72, and 180 µg/L), alongside a control group. We evaluated various morphophysiological markers of toxicity, including survival, spontaneous movements, heart rate, hatching rate, body axis distortion, total body length, total yolk sac area, and total eye area. Additionally, we measured biochemical biomarkers such as reactive oxygen species (ROS) levels, lipid peroxidation, non-protein thiols (NPSH), and mitochondrial bioenergetic parameters. Our results showed that the concentration of 8 µg/L, currently permitted in drinking water according to Brazilian legislation, increased ROS production levels and caused alterations in mitochondrial physiology. Among the markers assessed, mitochondrial bioenergetic function appeared to be the most sensitive indicator of MZ embryotoxicity, as a decrease in complex I activity was observed at concentrations of 8 and 180 µg/L. Furthermore, concentrations higher than 8 µg/L impaired morphophysiological markers. Based on these findings, we can infer that the concentration of MZ allowed in drinking water by Brazilian environmental legislation is not safe for aquatic organisms. Our study provides evidence that this fungicide is a potent embryotoxic agent, highlighting the potential risks associated with its exposure.


Subject(s)
Drinking Water , Fungicides, Industrial , Water Pollutants, Chemical , Animals , Zebrafish/physiology , Fungicides, Industrial/metabolism , Brazil , Reactive Oxygen Species/metabolism , Embryo, Nonmammalian , Oxidative Stress , Lipid Peroxidation , Water Pollutants, Chemical/metabolism
8.
Article in English | MEDLINE | ID: mdl-37201559

ABSTRACT

Mancozeb is a widely used fungicide whose toxicity has been reported in non-target organisms, being considered to have high or very high acute toxicity to aquatic organisms. However, the toxicity of this compound is not well characterized in the developmental stages of fish. In this study, Danio rerio with 4-, 5-, and 6-days post fertilization (dpf) was exposed to MZ at non-lethal concentrations for 24, 48, or 72 h and subsequently, behavioral alterations, oxidative stress parameters and ERK, p38MAPK, and Akt phosphorylation were analyzed. MZ exposure during the larval period decreased motor performance evaluated by traveled distance, immobile time, and time spent in the peripheral area. In parallel, MZ induced ROS levels and increased the number of cells in apoptosis, causing severe DNA damage, inducing Acetylcholinesterase and Superoxide dismutase activities, and inhibiting Glutathione peroxidase and thioredoxin reductase. Additionally, phosphorylation levels of the proteins p38MAPK, ERK2, and Akt were stimulated. These findings are relevant considering the ecological implications of MZ exposure to fishes in different developmental stages and the role of the MAPK pathway in events like development and cell death.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/metabolism , Phosphorylation , Larva/metabolism , Acetylcholinesterase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Oxidative Stress , Embryo, Nonmammalian/metabolism , Water Pollutants, Chemical/toxicity
9.
Biochem Mol Biol Educ ; 51(4): 455-460, 2023.
Article in English | MEDLINE | ID: mdl-37078473

ABSTRACT

Ethanol (EtOH) is among the most consumed drugs in the world. The behavior of humans after ingestion of this drug is characteristic: At low doses it may be excitatory and at higher doses, it may induce depressant/sedative effects. Similar effects are observed in the zebrafish experimental model (Danio rerio), which has about 70% genetic similarity with humans and has been widely used in numerous research. With the objective of improving the learning of biochemistry students, this work aimed to develop a practical exercise in the laboratory for students to observe the behavioral repertoire of zebrafish under the effects of exposure to ethanol. Through this practical class, the students were able to observe the similarity of the behavior of the animal model with that of humans, showing its importance for the consolidation of knowledge, awakening in the students an interest in science and its applications in everyday life.


Subject(s)
Behavior, Animal , Zebrafish , Animals , Humans , Ethanol/pharmacology
10.
Drug Chem Toxicol ; 46(3): 575-587, 2023 May.
Article in English | MEDLINE | ID: mdl-35502483

ABSTRACT

Mancozeb (MZ), a manganese/zinc containing ethylene-bis-dithiocarbamate, is a broad-spectrum fungicide. Chronic exposure to MZ has been related to several organisms' neurological, hormonal, and developmental disorders. However, little is known about the post-natal effects of developmental exposure to MZ. In this study, Drosophila melanogaster was subjected to a pre-imaginal (eggs-larvae-pupae stage) model of exposure to MZ at 0.1 and 0.5 mg/mL. The emergence rate, body size, locomotor performance, sleep patterns, and molecular and biochemical parameters were evaluated in post-emerged flies. Results demonstrate that pre-imaginal exposure to MZ significantly impacted early emerged flies. Additionally, reduced progeny viability, smaller body size and delaying in emergence period, locomotor impairment, and prolonged sleep time were observed. Content of glucose, proteins, and triglycerides were altered, and the bioenergetics efficiency and oxidative phosphorylation at complex I were inhibited. mRNA stade state levels of genes responsive to stress, metabolism, and regulation of circadian cycle (Nrf2, p38, Hsp83, Akt1, GPDH, tor, per, tim, dILP2, and dILP6) were augmented, pointing out to stimulation of antioxidant defenses, insulin-dependent signaling pathway activation, and disruption of sleep regulation. These data were followed by increased lipid peroxidation and lower glutathione levels. In addition, the activity of catalase and glutathione-S-transferase were induced, whereas superoxide dismutase was inhibited. Together, these results demonstrate that developmental exposure to MZ formulation led to phenotype and behavioral alterations in young flies, possibly related to disruption of energetic metabolism, oxidative stress, and deregulation of genes implied in growth, sleep, and metabolism.


Subject(s)
Drosophila melanogaster , Zineb , Animals , Zineb/toxicity , Oxidative Stress , Antioxidants/pharmacology , Glutathione/metabolism
11.
J Toxicol Environ Health A ; 85(14): 573-585, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35354383

ABSTRACT

Fungal pollution of indoor environments contributes to several allergic symptoms and represents a public health problem. It is well-established that 1-octen-3-ol, also known as mushroom alcohol, is a fungal volatile organic compound (VOC) commonly found in damp indoor spaces and responsible for the typical musty odor. Previously it was reported that exposure to 1-octen-3-ol induced inflammations and disrupted mitochondrial morphology and bioenergetic rate in Drosophila melanogaster. The aim of this study was to examine the influence of 1-octen-3-ol on dehydrogenase activity, apoptotic biomarkers, levels of nitric oxide (NO) and reactive oxygen species (ROS), as well as antioxidant enzymes activities. D. melanogaster flies were exposed to an atmosphere containing 1-octen-3-ol (2.5 or ∞l/L) for 24 hr. Data demonstrated that 1-octen-3-ol decreased dehydrogenases activity and NO levels but increased ROS levels accompanied by stimulation of glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities without altering caspase 3/7 activation. These findings indicate that adverse mitochondrial activity effects following exposure of D. melanogaster to 1-octen-3-ol, a fungal VOC, may be attributed to oxidant stress. The underlying mechanisms involved in adverse consequences of indoor fungal exposure appear to be related to necrotic but not apoptotic mechanisms. The adverse consequences were sex-dependent with males displaying higher sensitivity to 1-octen-3-ol. Based upon on the fact that the fly genome shares nearly 75% of disease-related genes to human exposure to this fungus may explain the adverse human responses to mold especially for males.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Animals , Antioxidants/pharmacology , Drosophila melanogaster , Male , Nitric Oxide , Octanols , Oxidoreductases , Reactive Oxygen Species , Volatile Organic Compounds/analysis , Volatile Organic Compounds/toxicity
12.
Heliyon ; 7(1): e06007, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33521363

ABSTRACT

Mancozeb (MZ) is a broad-spectrum fungicide used worldwide in several crops. Neurological disorders in humans and animals have been associated with exposure to this compound by mechanisms still not fully understood. Drosophila melanogaster represents a reliable model in toxicological studies, presenting genetic and biochemical similarities with mammals. In this study, D. melanogaster flies were exposed for 15 days to MZ through the food (5 and 10 mg/mL). After that period, the efficiency of mitochondrial respiration complexes and metabolic markers were analyzed and evaluated. Flies presented weight loss, lower glucose, trehalose, and glycogen levels, and augmented levels of triglycerides concerning control (non-treated group). Acetyl-CoA Synthetase (ACeCS-1) and Acyl-Coenzyme Synthetase (ACSL1) contents were unchanged by MZ treatment. Mitochondrial respiration of flies was targeted by MZ treatment, evidenced by a decrease in oxygen consumption and bioenergetics rate and inhibition in mitochondrial complexes I/II. These results suppose that an impairment in mitochondrial respiration jointly with reduced levels of energetic substrates might be a mechanism involved in MZ deleterious effects, possibly by the limitation of ATP's availability, necessary for essential cellular processes.

13.
Environ Pollut ; 268(Pt B): 115783, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33065480

ABSTRACT

As agriculture expands to provide food and wellbeing to the world's growing population, there is a simultaneous increasing concern about the use of agrochemicals, which can harm non-target organisms, mainly in the aquatic environment. The fungicide Mancozeb (MZ) has been used on a large-scale and is a potent inducer of oxidative stress. Therefore, there is an urgent need for the development of more sensitive biomarkers designed to earlier biomonitoring of this compound. Here we tested the hypothesis that behavioral changes induced by sublethal MZ concentrations would occur first as compared to biochemical oxidative stress markers. Embryos at 4 h post-fertilization (hpf) were exposed to Mancozeb at 5, 10 and 20 µg/L. Controls were kept in embryo water only. Behavioral and biochemical parameters were evaluated at 24, 28, 72, and 168 hpf after MZ exposure. The results showed that MZ significantly altered spontaneous movement, escape responses, swimming capacity, and exploratory behavior at all exposure times. However, changes in ROS steady-stead levels and the activity of antioxidant enzymes were observable only at 72 and 168 hpf. In conclusion, behavioral changes occurred earlier than biochemical alterations in zebrafish embryos exposed to MZ, highlighting the potential of behavioral biomarkers as sensitive tools for biomonitoring programs.


Subject(s)
Maneb , Zineb , Animals , Embryo, Nonmammalian , Maneb/toxicity , Oxidation-Reduction , Oxidative Stress , Zebrafish , Zineb/toxicity
14.
Toxicol Res (Camb) ; 9(5): 726-734, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33178433

ABSTRACT

Hepatic encephalopathy is a pathophysiological complication of acute liver failure, which may be triggered by hepatotoxic drugs such as acetaminophen (APAP). Although APAP is safe in therapeutic concentration, APAP overdose may induce neurotoxicity, which is mainly associated with oxidative stress. Caffeine is a compound widely found in numerous natural beverages. However, the neuroprotective effect of caffeine remains unclear during APAP intoxication. The present study aimed to investigate the possible modulatory effects of caffeine on brain after APAP intoxication. Mice received intraperitoneal injections of APAP (250 mg/kg) and/or caffeine (20 mg/kg) and, 4 h after APAP administration, samples of brain and blood were collected for the biochemical analysis. APAP enhanced the transaminase activity levels in plasma, increased oxidative stress biomarkers (lipid peroxidation and reactive oxygen species), promoted an imbalance in endogenous antioxidant system in brain homogenate and increased the mortality. In contrast, APAP did not induce dysfunction of the mitochondrial bioenergetics. Co-treatment with caffeine modulated the biomarkers of oxidative stress as well as antioxidant system in brain. Besides, survival assays demonstrated that caffeine protective effects could be dose- and time-dependent. In addition, caffeine promoted an increase of mitochondrial bioenergetics response in brain by the enhancement of the oxidative phosphorylation, which could promote a better energy supply necessary for brain recovery. In conclusion, caffeine prevented APAP-induced biochemical alterations in brain and reduced lethality in APAP-intoxicated mice, these effects may relate to the preservation of the cellular antioxidant status, and these therapeutic properties could be useful in the treatment of hepatic encephalopathy induced by APAP intoxication.

15.
Ecotoxicol Environ Saf ; 206: 111232, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32890927

ABSTRACT

Fungal volatile organic compounds (VOCs) comprise a group of compounds commonly found in damp or water-damaged indoor places affecting air quality. Indoor fungal pollution is a severe threat to human health, contributing to the onset of allergic diseases. The compound 1-octen-3-ol, known as "mushroom alcohol", is the most abundant VOC and confers the characteristic mold odor. Exposure to 1-octen-3-ol induces inflammatory markers and episodes of allergic rhinitis and conjunctivitis; however, the effects of this compound towards mitochondria are fairly known. The present study aimed to evaluate the effects of 1-octen-3-ol on inflammatory targets and on mitochondrial morphology and bioenergetic rate in D. melanogaster. Drosophilas were exposed by inhalation to 2.5 µL/L and 5 µL/L of 1-octen-3-ol for 24 h. Observation showed a decreasing in the survival and locomotor ability of flies. Superoxide dismutase (SOD) activity was induced whereas Catalase (CAT) activity was inhibited. Analysis of the mitochondria respiration, detected inhibition of complex I and II in the electron transport chain and a decreased bioenergetic rate. Electronic microscopy provided morphological insights of the mitochondrial status in which a disarrangement in mitochondrial cristae profile was observed. 1-Octen-3-ol induced increased activity of caspase 3/7 and ERK phosphorylation. The mRNA relative steady-state levels of p38MAPK and JNK were down-regulated, whereas NF-κB and p53 were up-regulated. In parallel, nitrite levels were induced in relation to the non-exposed group. These findings point to the mitochondria as a crucial target for the toxicity of 1-octen-3-ol in parallel with activation of pro-inflammatory factors and apoptotic signaling pathway cascade.


Subject(s)
Drosophila melanogaster/drug effects , Mitochondria/drug effects , Octanols/toxicity , Volatile Organic Compounds/toxicity , Air Pollution , Air Pollution, Indoor/adverse effects , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Female , Fungi/metabolism , Gene Expression/drug effects , Humans , Male , Mitochondria/metabolism , Mitochondria/ultrastructure , Motor Activity/drug effects , Octanols/analysis , Volatile Organic Compounds/analysis
16.
Oxid Med Cell Longev ; 2020: 3960170, 2020.
Article in English | MEDLINE | ID: mdl-32273942

ABSTRACT

Croton campestris A. St-Hill popularly known as "velame do campo" is a native species of the savannah from northeastern Brazil, being used in folk medicine due to its beneficial effects in the treatment of many diseases, inflammation, detoxification, gastritis, and syphilis; however, its potential use as an antidote against organophosphorus compound poisoning has not yet been shown. Here, the protective effect of the methanolic fraction of C. campestris A. St.-Hill (MFCC) in Drosophila melanogaster exposed to chlorpyrifos (CP) was investigated. Flies were exposed to CP and MFCC during 48 h through the diet. Following the treatments, parameters such as mortality, locomotor behavior, and oxidative stress markers were evaluated. Exposure of flies to CP induced significant impairments in survival and locomotor performance. In parallel, increased reactive oxygen species and lipoperoxidation occurred. In addition, the activity of acetylcholinesterase was inhibited by CP, and superoxide dismutase and glutathione S-transferase activity was induced. Treatment with MFCC resulted in a blockage of all CP-induced effects, with the exception of glutathione S-transferase. Among the major compounds found in MFCC, only gallic acid (GA) showed a protective role against CP while quercetin and caffeic acid alone were ineffective. When in combination, these compounds avoided the toxicity of CP at the same level as GA. As far as we know, this is the first study reporting the protective effect of MFCC against organophosphate toxicity in vivo and highlights the biotechnological potential of this fraction attributing a major role in mediating the observed effects to GA. Therefore, MFCC may be considered a promising source for the development of new therapeutic agents for the treatment of organophosphate intoxications.


Subject(s)
Chlorpyrifos/toxicity , Croton/chemistry , Gallic Acid/therapeutic use , Plant Extracts/chemistry , Animals , Drosophila melanogaster , Female
17.
Oxid Med Cell Longev ; 2019: 9149203, 2019.
Article in English | MEDLINE | ID: mdl-31827707

ABSTRACT

Permethrin (PM) is a synthetic pyrethroid insecticide widely used as domestic repellent. Damage effects to nontarget organisms have been reported, particularly in the early stages of development. Studies indicate redox unbalance as secondary PM effect. Therefore, our goal was to investigate the acute PM effects on larval zebrafish. Larvae (6 days postfertilization) were exposed to PM (25-600 µg/L) during 24 hours, and 50% lethal concentration was estimated. For subsequent assays, the sublethal PM concentrations of 25 and 50 µg/L were used. PM increased anxiety-like behaviors according to the Novel Tank and Light-Dark tests. At the molecular level, PM induced increased ROS, which may be related to the increased lipid peroxidation, DNA damage, and apoptosis detected in PM-exposed organisms. In parallel, upregulation of the antioxidant system was detected after PM exposure, with increased superoxide dismutase, glutathione S-transferase and glutathione reductase activities, and thiol levels. The increased of Nrf2 target genes and the activation of an electrophile response element-driven reporter Tg(EPRE:LUC-EGFP) suggest that the Nrf2 pathway can mediate a fast response to PM, leading to antioxidant amplification. By using high-resolution respirometry, we found that exposure to PM decreased the oxygen consumption in all respiratory stages, disrupting the oxidative phosphorylation and inhibiting the electron transfer system, leading to decrease in bioenergetics capacity. In addition, PM led to increases of residual oxygen consumption and changes in substrate control ratio. Glucose metabolism seems to be affected by PM, with increased lactate dehydrogenase and decreased citrate synthase activities. Taken together, our results demonstrated the adverse effects of acute sublethal PM concentrations during larval development in zebrafish, causing apparent mitochondrial dysfunction, indicating a potential mechanism to redox unbalance and oxidative stress, which may be linked to the detected cell death and alterations in normal behavior patterns caused by acute PM exposure.


Subject(s)
Apoptosis/drug effects , Behavior, Animal/drug effects , DNA Damage/drug effects , Energy Metabolism/drug effects , Larva/growth & development , Permethrin/pharmacology , Zebrafish/growth & development , Animals , Insecticides/pharmacology , Larva/drug effects , Larva/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Zebrafish/metabolism
18.
Rev. bras. queimaduras ; 18(2): 107-112, maio. ago. 2019.
Article in Portuguese | LILACS | ID: biblio-1119561

ABSTRACT

Objetivos: Identificar o perfil epidemiológico dos pacientes acometidos por queimadura internados em um hospital infantil da Serra Catarinense. Método: Estudo descritivo, retrospectivo e transversal realizado por meio de análise prontuários de crianças (0 a 15 anos, 11 meses e 29 dias) internadas por queimadura em um hospital infantil da Serra Catarinense, no período de janeiro de 2013 a dezembro de 2018. Variáveis analisadas foram idade, sexo, tempo médio de internação, necessidade de internação em unidade de terapia intensiva (UTI), desfecho final, agente causal, região do corpo acometida e superfície corporal queimada (SCQ). Resultados: Foram analisados 78 prontuários, com média de idade de 4,2 anos, sendo maior a prevalência do sexo masculino (n=47; 60,3%). O tempo médio de internação foi 11 dias (62,8%), sendo que 4 pacientes (5%) necessitaram de internação em UTI e, destes, um foi a óbito. O principal agente causal foi líquido aquecido (n=61; 78%). Em relação às áreas acometidas 41% (n=32) apresentaram envolvimento da cabeça e a maior parte do casos computados apresentaram SCQ maior que 20% (n=18; 23,1%). Conclusão: A fase mais suscetível à queimadura é a pré-escolar, com predominância no sexo masculino, sendo que o acidente é por escaldadura e que acomete várias regiões do corpo, principalmente parte superior do mesmo. Assim, programas preventivos devem chamar a atenção dos pais e cuidadores quanto à avaliação dos riscos, de modo a antecipá-los, afastando ou tornando-os indisponíveis às crianças.


Objective: To identify the epidemiological profile of burn patients admitted to a children hospital of Serra Catarinense. Methods: A descriptive, retrospective, and cross-sectional study carried out through the analysis of medical records of children (0 to 15 years, 11 months and 29 days) hospitalized by burns in a children hospital of Serra Catarinense, from January 2013 to December 2018. Variables assessed were age, gender, average length of stay, need for admission to the intensive care unit (ICU), final outcome, causative agent, affected body region and burned body surface (SCQ). Results: 78 medical records were analyzed, with a mean age of 4.2 years, most of the sample was male (n=47; 60.3%). The average length of stay was 11 days (62.8%), with 4 patients (5%) requiring ICU admission and one patient dying. The main causative agent was heated fluid (n=61; 78%) and in relation to the affected areas, 41% (n=32) of the cases presented head involvement and most of the computed cases presented SQ greater than 20% (n=18; 23.1%). Conclusion: The results of the study indicate that the most susceptible phase to burn is the preschool, with predominance in males, and the accident is by scalding and affecting various regions of the body, especially the upper part of it. Thus, preventive programs should draw the attention of parents and caregivers to risk assessment in order to anticipate them, driving them away or unavailable to children.


Objetivo: identificar el perfil epidemiológico de pacientes con quemaduras ingresados en un hospital de niños de la sierra catarinense. Método: Estudio descriptivo, retrospectivo y transversal realizado a través del análisis de historias clínicas de niños (0 a 15 años, 11 meses y 29 días) hospitalizados por quemaduras en un hospital de niños de la sierra catarinense, de enero de 2013 a diciembre de 2018. Las variables evaluadas fueron la edad, el sexo, la duración promedio de la estadía, la necesidad de ingreso a la unidad de cuidados intensivos (UCI), el resultado final, el agente causal, la región corporal afectada y la superficie corporal quemada (SCQ). Resultados: Fueron analisadas 78 histórias clínicas de pacientes com edad de 4,2 años, con mayor prevalencia de varones (n=47; 60,3%). El tiempo promedio de estadía fue de 11 días (62,8%), con 4 pacientes (5%) que requirieron ingreso a la UCI y de estos, uno falleció. El principal agente causal fue los liquidos calientes (n=61; 78%). Con respecto a las áreas afectadas, el 41% (n=32) la cabeza y la mayoría de los casos presentaron un SCQ superior al 20% (n=18; 23,1%). Conclusión: Los resultados del estudio indican que la fase más susceptible a las quemaduras es la preescolar, con predominio en los hombres, y el agente causador los líquidos calientes, afectando varias regiones del cuerpo. Por lo tanto, los programas preventivos deben llamar la atención de los padres y cuidadores sobre la evaluación de riesgos para anticiparlos, alejándolos o no disponibles para los niños.


Subject(s)
Humans , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Health Profile , Burns/epidemiology , Primary Prevention/methods , Epidemiology, Descriptive , Cross-Sectional Studies/instrumentation , Retrospective Studies , Risk Assessment , Hospitals, Pediatric
19.
Oxid Med Cell Longev ; 2018: 2131895, 2018.
Article in English | MEDLINE | ID: mdl-30510616

ABSTRACT

Parkinson's disease is a degenerative and progressive illness characterized by the degeneration of dopaminergic neurons. 6-hydroxydopamine (6-OHDA) is a widespread model for induction of molecular and behavioral alterations similar to Parkinson and has contributed for testing of compounds with neuroprotective potential. The Brazilian plant Anacardium microcarpum is used in folk medicine for treatment of several illnesses; however, the knowledge about toxicology and biological effects for this plant is very rare. The neuroprotective effect from hydroalcoholic extract and methanolic and acetate fraction of A. microcarpum on 6-OHDA-induced damage on chicken brain slices was investigated in this study. 6-OHDA decreased cellular viability measured by MTT reduction assay, induced lipid peroxidation by HPLC, stimulated Glutathione-S-Transferase and Thioredoxin Reductase activity, and decreased Glutathione Peroxidase activity and the total content of thiols containing compounds. The methanolic fraction of A. microcarpum presented the better neuroprotective effects in 6-OHDA-induced damage in relation with hydroalcoholic and acetate fraction. The presence of AKT and ERK1/2 pharmacological inhibitors blocked the protective effect of methanolic fraction suggesting the involvement of survival pathways in the neuroprotection by the plant. The plant did not prevent 6-OHDA autoxidation or 6-OHDA-induced mitochondrial dysfunction. Thus, the neuroprotective effect of the methanolic fraction of A. microcarpum appears to be attributed in part to chelating properties of extract toward reactive species and is dependent on ERK1/2 and AKT phosphorylation. This study contributes to the understanding of biochemical mechanisms implied in neuroprotective effects of the vegetal species A. microcarpum.


Subject(s)
Anacardium/chemistry , Gene Expression Regulation/drug effects , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , Parkinson Disease/drug therapy , Plant Extracts/pharmacology , Adrenergic Agents/toxicity , Animals , Chickens , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Female , Male , Mitochondria/metabolism , Mitochondria/pathology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Proto-Oncogene Proteins c-akt/metabolism
20.
Oxid Med Cell Longev ; 2018: 5456928, 2018.
Article in English | MEDLINE | ID: mdl-30116484

ABSTRACT

Mancozeb (MZ), a manganese- and zinc-containing ethylene-bis-dithiocarbamate, is a broad-spectrum fungicide. Harmful effects of this fungicide have been reported in nontarget organisms via a not fully understood mechanism. Drosophila melanogaster has provided remarkable contributions for toxicological studies. This work was aimed at evaluating the biochemical targets and implication of oxidative stress in MZ-mediated toxicity in drosophilas. Exposure of flies for fifteen days to MZ at 5 and 10 mg/mL through the diet impaired locomotor performance and induced fly mortality. In parallel, it caused lipid peroxidation and reactive oxygen species (ROS) formation and Mn overload. MZ inhibited superoxide dismutase and inducted catalase and glutathione S-transferase activities. Nitric oxide and reduced glutathione levels were significantly decreased by MZ. Heat shock proteins (HSP70 and HSP83) and Nrf2 mRNA levels were significantly augmented in MZ-exposed flies. Our study reinforced the use of Drosophila melanogaster as a reliable model for the study of biochemical targets of pesticides, and based on our data, MZ induced oxidative damage and Mn accumulation in a concentration-dependent manner. An adaptative cellular state was inducted by the lower concentration of pesticide, possibly contributing to the slighter damage observed.


Subject(s)
Fungicides, Industrial/adverse effects , HSP70 Heat-Shock Proteins/metabolism , Maneb/adverse effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Zineb/adverse effects , Animals , Drosophila melanogaster , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...