Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Ecol ; 100(1)2024 01 16.
Article in English | MEDLINE | ID: mdl-38111220

ABSTRACT

Climate change is altering patterns of precipitation, cryosphere thaw, and land-ocean influxes, affecting understudied Arctic estuarine tidal flats. These transitional zones between terrestrial and marine systems are hotspots for biogeochemical cycling, often driven by microbial processes. We investigated surface sediment bacterial community composition and function from May to September along a river-intertidal-subtidal-fjord gradient. We paired metabarcoding of in situ communities with in vitro carbon-source utilization assays. Bacterial communities differed in space and time, alongside varying environmental conditions driven by local seasonal processes and riverine inputs, with salinity emerging as the dominant structuring factor. Terrestrial and riverine taxa were found throughout the system, likely transported with runoff. In vitro assays revealed sediment bacteria utilized a broader range of organic matter substrates when incubated in fresh and brackish water compared to marine water. These results highlight the importance of salinity for ecosystem processes in these dynamic tidal flats, with the highest potential for utilization of terrestrially derived organic matter likely limited to tidal flat areas (and times) where sediments are permeated by freshwater. Our results demonstrate that intertidal flats must be included in future studies on impacts of increased riverine discharge and transport of terrestrial organic matter on coastal carbon cycling in a warming Arctic.


Subject(s)
Ecosystem , Geologic Sediments , Geologic Sediments/microbiology , Bacteria , Estuaries , Carbon
2.
Aquat Toxicol ; 263: 106696, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37757569

ABSTRACT

The increased export of terrestrial dissolved organic matter (terrDOM) to coastal marine ecosystems may affect local filter feeders and the local food web via the altered uptake of organic material and associated contaminants. To compare terrDOM to marine DOM (marDOM) as contaminant vectors to coastal biota, we exposed blue mussels (Mytilus sp.) to the different DOM types in combination with teflubenzuron, a widely applied lipophilic aquaculture medicine targeting salmon lice (Lepeophtheirus salmonis). A 16-day exposure of the blue mussels to DOM and teflubenzuron was followed by a depuration phase of 20 days without teflubenzuron. We calculated teflubenzuron adsorption rates and bioaccumulation factors (BAF) using a Bayesian model, expecting teflubenzuron uptake to be greater with terrDOM than marDOM due to the higher prevalence of large amphipathic humic acids in terrDOM. Humic acids have strong absorption properties and are able to envelope lipophilic molecules. Thus, humic acids can function as an efficient contaminant vector when taken up by filter feeders. Although there were varying degrees of overlap, the mussels tended to accumulate higher amounts of teflubenzuron in the DOM treatments than in the seawater control (bioaccumulation factor [BAF] in seawater: median 106 L/kg; 2.5 %-97.5 % percentile: 69-160 L/kg). Contrary to expectations, mussels exposed to marDOM showed a trend toward more bioaccumulation of teflubenzuron than those exposed to terrDOM (BAF marine 144 L/kg; 102-221 L/kg versus BAF terrestrial: 121 L/kg; 82-186 L/kg). The highest teflubenzuron accumulation was observed with the 50:50 mixture of marDOM and terrDOM (BAF mix: 165 L/kg; 117-244 L/kg). The slight difference in DOM-type accumulation rates observed in this experiment-especially the accumulation rate of terrDOM compared to that of the seawater-only treatment type-was not considered environmentally relevant. Further studies are necessary to see if the observed trends transfer to complex environmental systems.

3.
Ambio ; 52(10): 1575-1591, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37286918

ABSTRACT

There is an urgent need to understand and address the risks associated with a warming climate for ecosystems and societies in the Arctic and sub-Arctic regions. There are major gaps in our understanding of the complex effects of climate change-including extreme events, cascading impacts across ecosystems, and the underlying socioecological dynamics and feedbacks-all of which need collaborative efforts to be resolved. Here, we present results where climate scientists, ecologists, social scientists, and practitioners were asked to identify the most urgent research needs for understanding climate change impacts and to identify the actions for reducing future risks in catchment areas in the Norwegian High North, a region that encompasses both Arctic and sub-Arctic climates in northern Norway. From a list of 77 questions, our panel of 19 scientists and practitioners identified 15 research needs that should be urgently addressed. We particularly urge researchers to investigate cross-ecosystem impacts and the socioecological feedbacks that could amplify or reduce risks for society.


Subject(s)
Climate Change , Ecosystem , Norway , Arctic Regions
4.
Environ Toxicol Chem ; 42(4): 873-887, 2023 04.
Article in English | MEDLINE | ID: mdl-36727562

ABSTRACT

Mercury (Hg) is a serious concern for aquatic ecosystems because it may biomagnify to harmful concentrations within food webs and consequently end up in humans that eat fish. However, the trophic transfer of mercury through the aquatic food web may be impacted by several factors related to network complexity and the ecology of the species present. The present study addresses the interplay between trophic ecology and mercury contamination in the fish communities of two lakes in a pollution-impacted subarctic watercourse, exploring the role of both horizontal (feeding habitat) and vertical (trophic position) food web characteristics as drivers for the Hg contamination in fish. The lakes are located in the upper and lower parts of the watercourse, with the lower site located closer to, and downstream from, the main pollution source. The lakes have complex fish communities dominated by coregonids (polymorphic whitefish and invasive vendace) and several piscivorous species. Analyses of habitat use, stomach contents, and stable isotope signatures (δ15 N, δ13 C) revealed similar food web structures in the two lakes except for a few differences chiefly related to ecological effects of the invasive vendace. The piscivores had higher Hg concentrations than invertebrate-feeding fish. Concentrations increased with size and age for the piscivores and vendace, whereas habitat differences were of minor importance. Most fish species showed significant differences in Hg concentrations between the lakes, the highest values typically found in the downstream site where the biomagnification rate also was higher. Mercury levels in piscivorous fish included concentrations that exceed health authorization limits, with possible negative implications for fishing and human consumption. Our findings accentuate the importance of acquiring detailed knowledge of the drivers that can magnify Hg concentrations in fish and how these may vary within and among aquatic systems, to provide a scientific basis for adequate management strategies. Environ Toxicol Chem 2023;42:873-887. © 2023 SETAC.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Humans , Mercury/analysis , Ecosystem , Bioaccumulation , Environmental Monitoring , Invertebrates , Food Chain , Lakes/chemistry , Water Pollutants, Chemical/analysis , Fishes
5.
Sci Total Environ ; 839: 155803, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35561904

ABSTRACT

Temporal trend analysis of (total) mercury (THg) concentrations in Arctic biota were assessed as part of the 2021 Arctic Monitoring and Assessment Programme (AMAP) Mercury Assessment. A mixed model including an evaluation of non-linear trends was applied to 110 time series of THg concentrations from Arctic and Subarctic biota. Temporal trends were calculated for full time series (6-46 years) and evaluated with a particular focus on recent trends over the last 20 years. Three policy-relevant questions were addressed: (1) What time series for THg concentrations in Arctic biota are currently available? (2) Are THg concentrations changing over time in biota from the Arctic? (3) Are there spatial patterns in THg trends in biota from the Arctic? Few geographical patterns of recent trends in THg concentrations were observed; however, those in marine mammals tended to be increasing at more easterly longitudes, and those of seabirds tended to be increasing in the Northeast Atlantic; these should be interpreted with caution as geographic coverage remains variable. Trends of THg in freshwater fish were equally increasing and decreasing or non-significant while those in marine fish and mussels were non-significant or increasing. The statistical power to detect trends was greatly improved compared to the 2011 AMAP Mercury Assessment; 70% of the time series could detect a 5% annual change at the 5% significance level with power ≥ 80%, while in 2011 only 19% met these criteria. Extending existing time series, and availability of new, powerful time series contributed to these improvements, highlighting the need for annual monitoring, particularly given the spatial and temporal information needed to support initiatives such as the Minamata Convention on Mercury. Collecting the same species/tissues across different locations is recommended. Extended time series from Alaska and new data from Russia are also needed to better establish circumarctic patterns of temporal trends.


Subject(s)
Mercury , Animals , Arctic Regions , Biota , Environmental Monitoring , Fresh Water , Mammals , Mercury/analysis
6.
Environ Pollut ; 306: 119361, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35523379

ABSTRACT

Increasing terrestrial run-off from melting glaciers and thawing permafrost to Arctic coastal areas is expected to facilitate re-mobilization of stored legacy persistent organic pollutants (POPs) and mercury (Hg), potentially increasing exposure to these contaminants for coastal benthic organisms. We quantified chlorinated POPs and Hg concentrations, lipid content and multiple dietary markers, in a littoral deposit-feeding amphipod Gammarus setosus and sediments during the melting period from April to August in Adventelva river estuary in Svalbard, a Norwegian Arctic Aarchipelago. There was an overall decrease in concentrations of ∑POPs from April to August (from 58 ± 23 to 13 ± 4 ng/g lipid weight; lw), Hg (from 5.6 ± 0.7 to 4.1 ± 0.5 ng/g dry weight; dw) and Methyl Hg (MeHg) (from 5 ± 1 to 0.8 ± 0.7 ng/g dw) in G. setosus. However, we observed a seasonal peak in penta- and hexachlorobenzene (PeCB and HCB) in May (2.44 ± 0.3 and 23.6 ± 1.7 ng/g lw). Sediment concentrations of POPs and Hg (dw) only partly correlated with the contaminant concentrations in G. setosus. Dietary markers, including fatty acids and carbon and nitrogen stable isotopes, indicated a diet of settled phytoplankton in May-July and a broader range of carbon sources after the spring bloom. Phytoplankton utilization and chlorobenzene concentrations in G. setosus exhibited similar seasonal patterns, suggesting a dietary uptake of chlorobenzenes that is delivered to the aquatic environment during spring snowmelt. The seasonal decrease in contaminant concentrations in G. setosus could be related to seasonal changes in dietary contaminant exposure and amphipod ecology. Furthermore, this decrease implies that terrestrial run-off is not a significant source of re-mobilized Hg and legacy POPs to littoral amphipods in the Adventelva river estuary during the melt season.


Subject(s)
Amphipoda , Environmental Pollutants , Mercury , Water Pollutants, Chemical , Animals , Carbon , Environmental Monitoring , Lipids , Mercury/analysis , Phytoplankton , Seasons , Water Pollutants, Chemical/analysis
7.
Environ Sci Technol ; 56(10): 6337-6348, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35472293

ABSTRACT

Climate change-driven increases in air and sea temperatures are rapidly thawing the Arctic cryosphere with potential for remobilization and accumulation of legacy persistent organic pollutants (POPs) in adjacent coastal food webs. Here, we present concentrations of selected POPs in zooplankton (spatially and seasonally), as well as zoobenthos and sculpin (spatially) from Isfjorden, Svalbard. Herbivorous zooplankton contaminant concentrations were highest in May [e.g., ∑polychlorinated biphenyls (8PCB); 4.43, 95% CI: 2.72-6.3 ng/g lipid weight], coinciding with the final stages of the spring phytoplankton bloom, and lowest in August (∑8PCB; 1.6, 95% CI: 1.29-1.92 ng/g lipid weight) when zooplankton lipid content was highest, and the fjord was heavily impacted by sediment-laden terrestrial inputs. Slightly increasing concentrations of α-hexachlorocyclohexane (α-HCH) in zooplankton from June (1.18, 95% CI: 1.06-1.29 ng/g lipid weight) to August (1.57, 95% CI: 1.44-1.71 ng/g lipid weight), alongside a higher percentage of α-HCH enantiomeric fractions closer to racemic ranges, indicate that glacial meltwater is a secondary source of α-HCH to fjord zooplankton in late summer. Except for α-HCH, terrestrial inputs were generally associated with reduced POP concentrations in zooplankton, suggesting that increased glacial melt is not likely to significantly increase exposure of legacy POPs in coastal fauna.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Animals , Arctic Regions , Environmental Monitoring , Food Chain , Lipids , Polychlorinated Biphenyls/analysis , Zooplankton
8.
Environ Pollut ; 281: 116963, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33823300

ABSTRACT

Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This study has investigated how secondary sources of POPs from land influence the occurrence and fate of POPs in an Arctic coastal marine system. Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant concentrations (

Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Arctic Regions , Ecosystem , Environmental Monitoring , Estuaries , Geologic Sediments , Hexachlorobenzene/analysis , Polychlorinated Biphenyls/analysis , Svalbard , Water Pollutants, Chemical/analysis
9.
Front Microbiol ; 12: 614634, 2021.
Article in English | MEDLINE | ID: mdl-33717004

ABSTRACT

The Arctic is experiencing dramatic changes including increases in precipitation, glacial melt, and permafrost thaw, resulting in increasing freshwater runoff to coastal waters. During the melt season, terrestrial runoff delivers carbon- and nutrient-rich freshwater to Arctic coastal waters, with unknown consequences for the microbial communities that play a key role in determining the cycling and fate of terrestrial matter at the land-ocean interface. To determine the impacts of runoff on coastal microbial (bacteria and archaea) communities, we investigated changes in pelagic microbial community structure between the early (June) and late (August) melt season in 2018 in the Isfjorden system (Svalbard). Amplicon sequences of the 16S rRNA gene were generated from water column, river and sediment samples collected in Isfjorden along fjord transects from shallow river estuaries and glacier fronts to the outer fjord. Community shifts were investigated in relation to environmental gradients, and compared to river and marine sediment microbial communities. We identified strong temporal and spatial reorganizations in the structure and composition of microbial communities during the summer months in relation to environmental conditions. Microbial diversity patterns highlighted a reorganization from rich communities in June toward more even and less rich communities in August. In June, waters enriched in dissolved organic carbon (DOC) provided a niche for copiotrophic taxa including Sulfitobacter and Octadecabacter. In August, lower DOC concentrations and Atlantic water inflow coincided with a shift toward more cosmopolitan taxa usually associated with summer stratified periods (e.g., SAR11 Clade Ia), and prevalent oligotrophic marine clades (OM60, SAR92). Higher riverine inputs of dissolved inorganic nutrients and suspended particulate matter also contributed to spatial reorganizations of communities in August. Sentinel taxa of this late summer fjord environment included taxa from the class Verrucomicrobiae (Roseibacillus, Luteolibacter), potentially indicative of a higher fraction of particle-attached bacteria. This study highlights the ecological relevance of terrestrial runoff for Arctic coastal microbial communities and how its impacts on biogeochemical conditions may make these communities susceptible to climate change.

11.
Sci Total Environ ; 674: 9-18, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31003089

ABSTRACT

Increases in terrestrial organic matter (tOM) transport from catchments to boreal lakes can affect methylmercury (MeHg) accumulation in aquatic biota both directly by increasing concentrations of aqueous MeHg, and indirectly through effects on MeHg bioavailability and on energy pathways in the lower food web. We carried out a detailed seasonal study of water chemistry, zooplankton diet, and MeHg accumulation in zooplankton in two lakes with contrasting tOM concentrations. Between-lake differences explained 51% of the variability in our water chemistry data, with no observed effect of season or sampling depth, contrary to our expectations. Higher tOM was correlated with higher aqueous Hg concentrations, lower areal pelagic primary productivity, and an increased contribution of terrestrial particles to pelagic particulate organic matter. Based on dietary marker analysis (δ13C, δ15N, and fatty acid [FA] composition), zooplankton diet was strongly linked to feeding mechanism, with dietary reliance on phytoplankton highest in the selective-feeding calanoid copepods, and lowest in filter feeding cladocerans. Zooplankton dietary reliance on phytoplankton and their concentrations of high-quality lipids, including polyunsaturated fatty acids, were higher in the clear-water lake than in the brown-water lake, where bacterial and terrestrial food sources were more prevalent. MeHg was highest in zooplankton from the brown-water lake, with highest concentrations in the 200-500 µm zooplankton size fraction for both lakes. Contrary to our expectations, there was no effect of season on zooplankton dietary markers or MeHg. Our results suggest that, overall, higher tOM results in higher MeHg concentrations in water and zooplankton, and reduces zooplankton dietary reliance on phytoplankton. Increased tOM thus leads to a decrease in the nutritional quality of zooplankton (i.e. higher MeHg concentrations, and lower concentrations of essential fatty acids), which may cascade up the food web with negative implications for higher trophic levels.


Subject(s)
Environmental Monitoring , Food Chain , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis , Zooplankton/chemistry , Animals , Copepoda
12.
Environ Sci Technol ; 53(4): 1834-1843, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30636402

ABSTRACT

Temporally (1965-2015) and spatially (55°-70°N) extensive records of total mercury (Hg) in freshwater fish showed consistent declines in boreal and subarctic Fennoscandia. The database contains 54 560 fish entries ( n: pike > perch ≫ brown trout > roach ≈ Arctic charr) from 3132 lakes across Sweden, Finland, Norway, and Russian Murmansk area. 74% of the lakes did not meet the 0.5 ppm limit to protect human health. However, after 2000 only 25% of the lakes exceeded this level, indicating improved environmental status. In lakes where local pollution sources were identified, pike and perch Hg concentrations were significantly higher between 1965 and 1990 compared to values after 1995, likely an effect of implemented reduction measures. In lakes where Hg originated from long-range transboundary air pollution (LRTAP), consistent Hg declines (3-7‰ per year) were found for perch and pike in both boreal and subarctic Fennoscandia, suggesting common environmental controls. Hg in perch and pike in LRTAP lakes showed minimal declines with latitude, suggesting that drivers affected by temperature, such as growth dilution, counteracted Hg loading and food web exposure. We recommend that future fish Hg monitoring sampling design should include repeated sampling and collection of pollution history, water chemistry, fish age, and stable isotopes to enable evaluation of emission reduction policies.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Environmental Monitoring , Finland , Fishes , Humans , Lakes , Norway , Russia , Sweden
13.
Sci Total Environ ; 627: 341-348, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29426157

ABSTRACT

Mercury (Hg) concentrations in water and biota are often positively correlated to organic matter (OM), typically measured as total or dissolved organic carbon (TOC/DOC). However, recent evidence suggests that higher OM concentrations inhibit bioaccumulation of Hg. Here, we test how TOC impacts the Hg accumulation in fish in a synoptic study of Methyl-Hg (MeHg) in water and total Hg (THg) in perch (Perca fluviatilis) in 34 boreal lakes in southern Norway. We found that aqueous MeHg (r2 = 0.49, p < 0.0001) and THg (r2 = 0.69, p < 0.0001), and fish THg (r2 = 0.26, p < 0.01) were all positively related with TOC. However, we found declining MeHg bioaccumulation factors (BAFMeHg) for fish with increasing TOC concentrations. The significant correlation between fish THg concentrations and aqueous TOC suggests that elevated fish Hg levels in boreal regions are associated with humic lakes. The declining BAFMeHg with increasing TOC suggest that increased OM promotes increased aqueous Hg concentrations, but lowers relative MeHg bioaccumulation. A mechanistic understanding of the response from OM on BAFMeHg might be found in the metal-complexation properties of OM, where OM complexation of metals reduces their bioavailability. Hence, suggesting that MeHg bioaccumulation becomes less effective at higher TOC, which is particularly relevant when assessing potential responses of fish Hg to predicted future changes in OM inputs to boreal ecosystems. Increased browning of waters may affect fish Hg in opposite directions: an increase of food web exposure to aqueous Hg, and reduced bioavailability of Hg species. However, the negative relationship between BAFMeHg and TOC is challenging to interpret, and carries a great deal of uncertainty, since this relationship may be driven by the underlying correlation between TOC and MeHg (i.e. spurious correlations). Our results suggest that the trade-off between Hg exposure and accumulation will have important implications for the effects of lake browning on Hg transport, bioavailability, and trophodynamics.

14.
Environ Toxicol Chem ; 37(5): 1476-1486, 2018 05.
Article in English | MEDLINE | ID: mdl-29341225

ABSTRACT

Despite global efforts to reduce anthropogenic mercury (Hg) emissions, the timescale and degree to which Hg concentrations in the environment and biota respond to decreased emissions remain challenging to assess or predict. In the present study we characterize long-term trends and life-history patterns in Hg accumulation and toxicological implications of Hg contamination for a freshwater seal from one of the world's largest lakes (Lake Baikal, Siberia, Russia) using contemporary tissues and archival teeth. Stable isotope analysis and Hg analyses of soft tissues (muscle, liver, kidney, blood, brain, heart) and teeth from 22 contemporary seals revealed rapid changes in diet and Hg accumulation in the first year of life with a stable diet and increase in tissue Hg throughout the rest of life. Although maternal transfer of Hg was an important source of Hg to seal pups, reproduction and lactation by female seals did not appear to result in sex-related differences in Hg concentrations or age-related accumulation in adult seals. Based on Hg analysis of archival teeth (n = 114) and reconstructed values for soft tissues, we also assessed temporal trends in seal Hg between the years 1960 and 2013. Seal Hg concentrations in hard (teeth) and soft (e.g., muscle, liver) tissues were highest in the 1960s and 1970s, followed by a decrease. The decline in seal Hg concentrations in recent decades was most likely driven by a reduction in Hg inputs to the lake, suggesting that global and regional efforts to reduce Hg emissions have been successful at reducing ecosystem and human health risks posed by Hg in Lake Baikal. Environ Toxicol Chem 2018;37:1476-1486. © 2018 SETAC.


Subject(s)
Environmental Monitoring , Lakes , Mercury/analysis , Mercury/toxicity , Seals, Earless/metabolism , Animals , Biota , Carbon Isotopes/analysis , Diet , Female , Linear Models , Nitrogen Isotopes/analysis , Russia , Time Factors , Tissue Distribution , Tooth/metabolism , Water Pollutants, Chemical/analysis
15.
Environ Sci Technol ; 51(21): 12764-12773, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29034678

ABSTRACT

We characterized spatial patterns of surface sediment concentrations of seven polychlorinated biphenyls (PCBs), seven polycyclic aromatic hydrocarbons (PAHs), three chlorinated pesticides, and five metals in Norwegian waters and Skagerrak. In total, we analyzed 5036 concentrations of 22 chemical substances that were measured between 1986 and 2014 at 333 sampling sites by means of generalized additive models (GAMs). We found that GAMs with organic carbon content of the sediment and latitude and longitude as co-variates explained as ca. 75% of the variability of the contaminant sediment concentrations. For metals, a predominantly hotspot-driven spatial pattern was found, i.e., we identified historical pollution hotspots (e.g., Sørfjord in western Norway) for mercury, zinc, cadmium, and lead. Highest concentrations of PAHs and PCBs were found close to densely populated and industrialized regions, i.e., in the North Sea and in the Kattegat and Skagerrak. The spatial pattern of the PCBs suggests the secondary and diffuse atmospheric nature of their sources. Atmospheric inputs are the main sources of pollution for most organic chemicals considered, but north of the Arctic circle, we found that concentrations of PAHs increased from south to north most likely related to a combination of coal-eroding bedrock and the biological pump. The knowledge acquired in the present research is essential for developing effective remediation strategies that are consistent with international conventions on pollution control.


Subject(s)
Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Geologic Sediments , Metals , North Sea , Norway , Polychlorinated Biphenyls
16.
Environ Sci Technol ; 51(18): 10316-10325, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28793769

ABSTRACT

Little is known about the history of heavy metal pollution of Russia's Lake Baikal, one of the world's largest lakes and a home to numerous endemic species, including the Baikal Seal, Pusa sibirica. We investigated the history of heavy metal (V, Cu, Zn, Cd, Hg, Tl, Pb, U) pollution in Lake Baikal seals over the past 8 decades. C and N stable isotope analysis (SIA) and laser-ablation ICP-MS of seal teeth were used to examine changes in feeding ecology, heavy metal levels associated with life history events and long-term variation in metal exposure. SIA did not suggest large changes in the feeding ecology of Baikal seals over the past 80 years. LA-ICP-MS analyses revealed element-specific ontogenetic variability in metal concentrations, likely related to maternal transfer, changes in food sources and starvation. Hg and Cd levels in seals varied significantly across the time series, with concentrations peaking in the 1960s - 1970s but then declining to contemporary levels similar to those observed in the 1930s and 1940s. Trends in atmospheric emissions of Hg suggest that local sources as well as emissions from eastern Russia and Europe may be important contributors of Hg to Lake Baikal and that, despite the size of Lake Baikal, its food web appears to respond rapidly to changing inputs of contaminants.


Subject(s)
Metals, Heavy , Seals, Earless , Animals , Environmental Pollutants , Europe , Lakes , Reproduction , Russia , Time Factors , Tissue Distribution
17.
Environ Toxicol Chem ; 34(6): 1213-23, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25663582

ABSTRACT

Methylmercury (MeHg) concentrations in freshwater fish from southeastern Norway continue to increase, highlighting the need for a comprehensive understanding of MeHg sources, cycling, and degradation in the aquatic environment. The authors assessed the importance of photodemethylation in the MeHg budget of 4 Norwegian lakes. Photodemethylation rates were determined using incubation experiments with MeHg-spiked natural lake water. The authors determined full-spectrum exposure rates at all study sites and waveband-specific rates (photosynthetically active radiation, ultraviolet-A radiation, and ultraviolet-B radiation) at 1 clear-water (Sognsvann) and 1 humic (Langtjern) site. No significant differences in photodemethylation rates between the sites were found, and the authors' observed rates agreed with available literature for lake and wetland waters. The authors paired experimentally derived photodemethylation rates with lake-specific incident irradiation, light attenuation, and MeHg concentrations to estimate MeHg loss through photodemethylation for the study sites. For Langtjern, losses through photodemethylation equalled 27% of total annual inputs, highlighting the importance of photodemethylation in the MeHg budget. Furthermore, the authors assessed how changes in terrestrial dissolved organic carbon (DOC) exported to freshwaters and climate-driven reductions in ice cover duration may affect MeHg losses through photodemethylation. Results suggest that future increases in DOC may lead to higher aqueous MeHg concentrations in boreal lakes due to increased DOC-associated MeHg inputs paired with significant decreases in the loss of MeHg through photodemethylation due to increased light attenuation.


Subject(s)
Lakes/analysis , Methylmercury Compounds/chemistry , Methylmercury Compounds/radiation effects , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/radiation effects , Biodegradation, Environmental , Kinetics , Light , Methylation , Norway , Photochemistry , Ultraviolet Rays
18.
Environ Toxicol Chem ; 34(2): 215-23, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25470784

ABSTRACT

The methylated form of mercury (methylmercury) is a potent neurotoxic chemical and a contaminant of concern for fisheries because of its potential effects on ecosystem and human health. In Africa, inland fisheries are a crucial component of food and economic security, yet little information is available on mercury (Hg) contamination trends. The authors compiled published data on Hg contamination in African freshwater fishes, invertebrates, and plankton, as well as on potential drivers of Hg concentrations in these organisms. From 30 identified studies the authors assembled 407 total Hg concentrations from 166 fish species, 10 types of invertebrates, and various plankton, distributed across 31 water bodies in 12 countries. In fishes, total Hg concentrations, expressed as mean (± standard deviation) per location, averaged 156.0 ± 328.0 ng/g wet weight and ranged from 5.5 ng/g wet weight to 1865.0 ng/g wet weight. Only locations with nearby artisanal and small-scale gold mining operations had mean Hg concentrations above the World Health Organization/Food and Agriculture Organization's recommended guideline for fish (500 ng/g wet wt). The authors used mixed models to detect relationships between fish Hg concentrations and trophic level, mass, latitude, and chlorophyll a. Mass, trophic level, and latitude were all positive predictors of Hg concentration, confirming the presence of Hg bioaccumulation and biomagnification in African fishes. Although strong trends in Hg concentrations were evident, the present study also highlights limited availability of Hg data in Africa.


Subject(s)
Environmental Monitoring , Fishes/metabolism , Fresh Water/chemistry , Mercury/analysis , Africa , Animals , Chlorophyll/analysis , Chlorophyll A , Food Chain , Humans , Risk Assessment
19.
Sci Total Environ ; 506-507: 126-36, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25460947

ABSTRACT

Despite the global prevalence of both mercury (Hg) contamination and anthropogenic eutrophication, relatively little is known about the behavior of Hg in eutrophic and hypereutrophic systems or the effects of lake trophic status on Hg uptake and trophodynamics. In the current study we explore Hg trophodynamics at 8 tropical East African study sites ranging from mesotrophic to hypereutrophic, in order to assess the influence of lake trophic status on Hg uptake and biomagnification. Comprehensive water, plankton and fish samples were collected for analysis of total mercury (THg) and stable carbon and nitrogen isotopic ratios. We found evidence that uptake of THg into phytoplankton tended to be lower in higher productivity systems. THg concentrations in fish were generally low, and THg trophic magnification factors (TMFs; representing the average increase in contaminant concentrations from one trophic level to the next) ranged from 1.9 to 5.6. Furthermore TMFs were significantly lower in hypereutrophic lakes than in meso- and eutrophic lakes, and were negatively related to chlorophyll a concentrations both across our study lakes, and across African lakes for which literature data were available. These observations suggest that THg concentrations were strongly influenced by trophic status, with year-round high phytoplankton and fish growth rates reducing the potential for high THg in fish in these productive tropical lakes.


Subject(s)
Environmental Monitoring , Food Chain , Lakes/chemistry , Mercury/analysis , Water Pollutants, Chemical/analysis , Animals , Chlorophyll/analysis , Chlorophyll A , Fishes/metabolism , Mercury/metabolism , Methylmercury Compounds/analysis , Plankton/metabolism , Water Pollutants, Chemical/metabolism
20.
Sci Total Environ ; 481: 274-9, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24602912

ABSTRACT

This review compiles available information on the concentrations, sources, fate and toxicity of amines and amine-related compounds in surface waters, including rivers, lakes, reservoirs, wetlands and seawater. There is a strong need for this information, especially given the emergence of amine-based post-combustion CO2 capture technologies, which may represent a new and significant source of amines to the environment. We identify a broad range of anthropogenic and natural sources of amines, nitrosamines and nitramines to the aquatic environment, and identify some key fate and degradation pathways of these compounds. There were very few data available on amines in surface waters, with reported concentrations often below detection and only rarely exceeding 10 µg/L. Reported concentrations for seawater and reservoirs were below detection or very low, while for lakes and rivers, concentrations spanned several orders of magnitude. The most prevalent and commonly detected amines were methylamine (MA), dimethylamine (DMA), ethylamine (EA), diethylamine (DEA) and monoethanolamine (MEAT). The paucity of data may reflect the analytical challenges posed by determination of amines in complex environmental matrices at ambient levels. We provide an overview of available aquatic toxicological data for amines and conclude that at current environmental concentrations, amines are not likely to be of toxicological concern to the aquatic environment, however, the potential for amines to act as precursors in the formation of nitrosamines and nitramines may represent a risk of contamination of drinking water supplies by these often carcinogenic compounds. More research on the prevalence and toxicity of amines, nitrosamines and nitramines in natural waters is necessary before the environmental impact of new point sources from carbon capture facilities can be adequately quantified.


Subject(s)
Amines/toxicity , Fresh Water/chemistry , Water Pollutants, Chemical/toxicity , Water Pollution, Chemical/statistics & numerical data , Aniline Compounds/toxicity , Nitrobenzenes/toxicity , Nitrosamines/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...