Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Am J Physiol Cell Physiol ; 312(3): C316-C327, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27974300

ABSTRACT

Nitric oxide is generated in skeletal muscle with activity and decreases Ca2+ sensitivity of the contractile apparatus, putatively by S-nitrosylation of an unidentified protein. We investigated the mechanistic basis of this effect and its relationship to the oxidation-induced increase in Ca2+ sensitivity in mammalian fast-twitch (FT) fibers mediated by S-glutathionylation of Cys134 on fast troponin I (TnIf). Force-[Ca2+] characteristics of the contractile apparatus in mechanically skinned fibers were assessed by direct activation with heavily Ca2+-buffered solutions. Treatment with S-nitrosylating agents, S-nitrosoglutathione (GSNO) or S-nitroso-N-acetyl-penicillamine (SNAP), decreased pCa50 ( = -log10 [Ca2+] at half-maximal activation) by ~-0.07 pCa units in rat and human FT fibers without affecting maximum force, but had no effect on rat and human slow-twitch fibers or toad or chicken FT fibers, which all lack Cys134. The Ca2+ sensitivity decrease was 1) fully reversed with dithiothreitol or reduced glutathione, 2) at least partially reversed with ascorbate, indicative of involvement of S-nitrosylation, and 3) irreversibly blocked by low concentration of the alkylating agent, N-ethylmaleimide (NEM). The biotin-switch assay showed that both GSNO and SNAP treatments caused S-nitrosylation of TnIfS-glutathionylation pretreatment blocked the effects of S-nitrosylation on Ca2+ sensitivity, and vice-versa. S-nitrosylation pretreatment prevented NEM from irreversibly blocking S-glutathionylation of TnIf and its effects on Ca2+ sensitivity, and likewise S-glutathionylation pretreatment prevented NEM block of S-nitrosylation. Following substitution of TnIf into rat slow-twitch fibers, S-nitrosylation treatment caused decreased Ca2+ sensitivity. These findings demonstrate that S-nitrosylation and S-glutathionylation exert opposing effects on Ca2+ sensitivity in mammalian FT muscle fibers, mediated by competitive actions on Cys134 of TnIf.


Subject(s)
Calcium/metabolism , Cysteine/metabolism , Isometric Contraction/physiology , Muscle Fibers, Fast-Twitch/physiology , Troponin I/metabolism , Animals , Binding Sites , Calcium Signaling/physiology , Cells, Cultured , Chickens , Cysteine/chemistry , Glutathione/metabolism , Humans , Male , Nitric Oxide/metabolism , Protein Binding , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Species Specificity , Troponin I/chemistry , Young Adult
2.
Clin Exp Pharmacol Physiol ; 39(9): 814-23, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22126336

ABSTRACT

1. World-wide epidemiological and experimental animal studies demonstrate that adversity in fetal life, resulting in intrauterine growth restriction, programmes the offspring for a greater susceptibility to ischaemic heart disease and heart failure in adult life. 2. After cardiogenesis, cardiomyocyte endowment is determined by a range of hormones and signalling pathways that regulate cardiomyocyte proliferation, apoptosis and the timing of multinucleation/terminal differentiation. 3. The small fetus may have reduced cardiomyocyte endowment owing to the impact of a suboptimal intrauterine environment on the signalling pathways that regulate cardiomyocyte proliferation, apoptosis and the timing of terminal differentiation.


Subject(s)
Fetal Growth Retardation/physiopathology , Heart Diseases/etiology , Heart/embryology , Myocytes, Cardiac/pathology , Organogenesis , Animals , Apoptosis , Cell Proliferation , Disease Susceptibility , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Heart/physiopathology , Heart Diseases/genetics , Heart Diseases/pathology , Heart Diseases/physiopathology , Humans , Male , Polyploidy , Pregnancy , Species Specificity
3.
J Physiol ; 589(Pt 9): 2181-96, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21115647

ABSTRACT

S-Nitrosoglutathione (GSNO) is generated in muscle and may S-glutathionylate and/or S-nitrosylate various proteins involved in excitation­contraction (EC) coupling, such as Na+-K+-ATPases, voltage-sensors (VSs) and Ca2+ release channels (ryanodine receptors,RyRs), possibly changing their properties. Using mechanically skinned fibres from rat extensor digitorum longus muscle, we sought to identify which EC coupling processes are most susceptible to GSNO-modulated changes and whether these changes could be important in muscle function and fatigue. For comparison, we examined the effect of other oxidation, nitrosylation, or glutathionylation treatments (S-nitroso-N-acetyl-penicillamine (SNAP), hydrogen peroxide,2,2-dithiodipyridine and reduced glutathione) on twitch and tetanic force, action potential (AP) repriming, sarcoplasmic reticulum (SR) Ca2+ loading and leakage, and contractile apparatus properties. None of the treatments detectably altered AP repriming, indicating that t-system excitability was relatively insensitive to such oxidative modification. Importantly, the overall effect on twitch and tetanic force of a given treatment was determined primarily by its action on Ca2+ sensitivity of the contractile apparatus. For example, S-nitrosylation with the NO• donor,SNAP, caused matching decreases in the contractile Ca2+ sensitivity and twitch response, and GSNO applied ∼10 min after preparation had very similar effects. The only exception was when GSNO was applied immediately after preparation, which resulted in irreversible decreases in twitch and tetanic responses even though it concomitantly increased Ca2+ sensitivity by∼0.1 pCaunits, the latter evidently due to S-glutathionylation of the contractile apparatus. This decrease in AP-mediated force responses was due to impaired VS­RyR coupling and was accompanied by increased Ca2+ leakage through RyRs. Such oxidation-related impairment of coupling could be responsible for prolonged low frequency fatigue in certain circumstances.


Subject(s)
Excitation Contraction Coupling , Glutathione/analogs & derivatives , Muscle Fatigue , Muscle Fibers, Skeletal/metabolism , Nitro Compounds/metabolism , 2,2'-Dipyridyl/analogs & derivatives , 2,2'-Dipyridyl/pharmacology , Action Potentials , Animals , Calcium/metabolism , Disulfides/pharmacology , Electric Stimulation , Excitation Contraction Coupling/drug effects , Glutathione/metabolism , Hydrogen Peroxide/pharmacology , In Vitro Techniques , Male , Muscle Fatigue/drug effects , Muscle Fibers, Skeletal/drug effects , Nitric Oxide/metabolism , Nitric Oxide Donors/pharmacology , Oxidants/pharmacology , Rats , Rats, Long-Evans , Reactive Oxygen Species/metabolism , S-Nitroso-N-Acetylpenicillamine/pharmacology , Sarcoplasmic Reticulum/metabolism , Sulfhydryl Reagents/pharmacology , Time Factors
4.
J Appl Physiol (1985) ; 101(3): 728-33, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16728522

ABSTRACT

The force-generating capacity of cardiomyocytes rapidly changes during gestation and early postnatal life coinciding with a transition in cardiomyocyte nucleation in both mice and rats. Changes in nucleation, in turn, appear to coincide with important changes in the excitation-contraction coupling architecture. However, it is not clear whether similar changes are observed in other mammals in which this transition occurs prenatally, such as sheep. Using small (70-300 microM diameter) chemically skinned cardiomyocyte bundles from the right ventricular papillary muscle of sheep fetuses at 126-132 and 137-140 days (d) gestational age (GA), we aimed to examine whether changes in cardiomyocyte nucleation during late gestation coincided with developmental changes in excitation-contraction coupling parameters (e.g., Ca(2+) uptake, Ca(2+) release, and force development). All experiments were conducted at room temperature (23 +/- 1 degrees C). We found that the proportion of mononucleate cardiomyocytes decreased significantly with GA (126-132 d, 45.7 +/- 4.7%, n = 7; 137-140 d, 32.8 +/- 1.6%, n = 6; P < 0.05). When we then examined force development between the two groups, there was no significant difference in either the maximal Ca(2+)-activated force (6.73 +/- 1.54 mN/mm(2), n = 14 vs. 6.55 +/- 1.25 mN/mm(2), n = 7, respectively) or the Ca(2+) sensitivity of the contractile apparatus (pCa at 50% maximum Ca(2+)-activated force: 126-132 d, 6.17 +/- 0.06, n = 14; 137-140 d, 6.24 +/- 0.08, n = 7). However, sarcoplasmic reticulum (SR) Ca(2+) uptake rates (but not Ca(2+) release) increased with GA (P < 0.05). These data reveal that during late gestation in sheep when there is a major transition in cardiomyocyte nucleation, SR Ca(2+) uptake rates increase, which would influence total SR Ca(2+) content and force production.


Subject(s)
Calcium Signaling/physiology , Heart Ventricles/embryology , Muscle Contraction/physiology , Myocytes, Cardiac/physiology , Papillary Muscles/embryology , Papillary Muscles/physiology , Ventricular Function , Animals , Calcium/metabolism , Cells, Cultured , Gestational Age , Sheep/embryology , Sheep/physiology
5.
J Physiol ; 551(Pt 1): 219-37, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12844504

ABSTRACT

This study examined the relationship between the level of Ca2+ loading in the sarcoplasmic reticulum (SR) and the amount of Ca2+ released by an action potential (AP) in fast-twitch skeletal muscle fibres of the rat. Single muscle fibres were mechanically skinned and electric field stimulation was used to induce an AP in the transverse-tubular system and a resulting twitch response. Responses were elicited in the presence of known amounts (0-0.38 mM) of BAPTA, a fast Ca2+ buffer, with the SR Ca2+ pump either functional or blocked by 50 microM 2,5-di-tert-butyl-1,4-hydroquinone (TBQ). When Ca2+ reuptake was blocked, an estimate of the amount of Ca2+ released by an AP could be derived from the size of the force response. In a fibre with the SR loaded with Ca2+ at the endogenous level (approximately 1.2 mM, expressed as total Ca2+ per litre fibre volume; approximately one-third of maximal loading), a single AP triggered the release of approximately 230 microM Ca2+. If a second AP was elicited 10 ms after the first, only a further approximately 60 microM Ca2+ was released, the reduction probably being due to Ca2+ inactivation of Ca2+ release. When Ca2+ reuptake was blocked, APs applied 15 s apart elicited similar amounts of Ca2+ release (approximately 230 microM) on the first two or three occasions and then progressively less Ca2+ was released until the SR was fully depleted after a total of approximately eight APs. When the SR was loaded to near-maximal capacity (approximately 3-4 mM), each AP (or pair of APs 10 ms apart) still only released approximately the same amount of Ca2+ as that released when the fibre was endogenously loaded. Consistent with this, successive APs (15 s apart) elicited similar amounts of Ca2+ release approximately 10-16 times before the amount released declined, and the SR was fully depleted of Ca2+ after a total release calculated to be approximately 3-4 mM. When the SR was loaded maximally, increasing the [BAPTA] above 280 microM resulted in an increase in the amount of Ca2+ released per AP, probably because the greater level of cytoplasmic Ca2+ buffering prevented Ca2+ inactivation from adequately limiting Ca2+ release. These results show that the amount of Ca2+ released by AP stimulation in rat fast-twitch fibres normally stays virtually constant over a wide range of SR Ca2+ content, in spite of the likely large change in the electrochemical gradient for Ca2+. This was also found to be the case in toad twitch fibres. This constancy in Ca2+ release should help ensure precise regulation of force production in fast-twitch muscle in a range of circumstances.


Subject(s)
Calcium/metabolism , Egtazic Acid/analogs & derivatives , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Sarcoplasmic Reticulum/metabolism , Action Potentials/physiology , Animals , Anura , Buffers , Chelating Agents/pharmacology , Cytoplasm , Egtazic Acid/pharmacology , Enzyme Inhibitors/pharmacology , Hydroquinones/pharmacology , In Vitro Techniques , Male , Muscle Contraction/physiology , Rats , Rats, Long-Evans
6.
J Physiol ; 547(Pt 3): 807-23, 2003 Mar 15.
Article in English | MEDLINE | ID: mdl-12562929

ABSTRACT

In this study the effects of oxidation and reduction on various steps in the excitation-contraction (E-C) coupling sequence was examined in mammalian skeletal muscle. In mechanically skinned fast-twitch fibres, electric field stimulation was used to generate action potentials in the sealed transverse-tubular (T-) system, thereby eliciting twitch responses, which are a sensitive measure of Ca2+ release. Treatment of fibres with the oxidant H2O2 (200 microM and 10 mM) for 2-5 min markedly potentiated caffeine-induced Ca2+ release and the force response to partial depolarisation of the T-system (by solution substitution). Importantly, such H2O2 treatment had no effect at all on any aspect of the twitch response (peak amplitude, rate of rise, decay rate constant and half-width), except in cases where it interfered with the T-system potential or voltage-sensor activation, resulting in a reduction or abolition of the twitch response. Exposure to strong thiol reductants, dithiothreitol (DTT, 10 mM) and reduced glutathione (GSH, 5 mM), did not affect the twitch response over 5 min, nor did varying the glutathione ratio (reduced to oxidised glutathione) from the level present endogenously in the cytosol of a rested fibre (30:1) to the comparatively oxidised level of 3:1. In fibres that had been oxidised by H2O2 (10 mM) (or by 2,2'-dithiodipyridine, 100 microM), exposure to GSH (5 mM) caused potentiation of twitch force (by approximately 20 % for H2O2); this effect was due to the increase in the Ca2+ sensitivity of the contractile apparatus that occurs under such circumstances and was fully reversed by subsequent exposure to 10 mM DTT. We conclude that: (a) the redox potential across the sarcomplamsic reticulum has no noticeable direct effect on normal E-C coupling in mammalian skeletal muscle, (b) oxidising the Ca2+-release channels and greatly increasing their sensitivity to Ca2+-induced Ca2+ release does not alter the amount of Ca2+ released by an action potential and (c) oxidation potentiates twitches by a GSH-mediated increase in the Ca2+ sensitivity of the contractile apparatus.


Subject(s)
Muscle Contraction/physiology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Animals , Caffeine/pharmacology , Calcium/metabolism , Cytosol/metabolism , Dithiothreitol/pharmacology , Electric Stimulation , Glutathione/metabolism , Glutathione Disulfide/metabolism , Hydrogen Peroxide/pharmacology , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Muscle Contraction/drug effects , Muscle, Skeletal/cytology , Oxidants/pharmacology , Oxidation-Reduction , Phosphodiesterase Inhibitors/pharmacology , Rats , Rats, Long-Evans
7.
J Physiol ; 546(Pt 1): 149-63, 2003 Jan 01.
Article in English | MEDLINE | ID: mdl-12509485

ABSTRACT

This study investigated the effects of the oxidants hydrogen peroxide (H(2)O(2)) and 2,2'-dithiodipyridine (DTDP), and reductants, glutathione (GSH) and dithiothreitol (DTT), on the properties of the contractile apparatus of rat fast- and slow-twitch skeletal muscle fibres, in order to assess how oxidation affects muscle function. Skinned muscle fibres were activated in heavily-buffered Ca(2+) solutions. The force-[Ca(2+)] relationship before and after various treatments was fitted by a Hill curve described by the maximum Ca(2+)-activated force, pCa(50) (-log(10)[Ca(2+)] giving half-maximum force) and n(H) (the Hill coefficient). Exposing freshly skinned fibres to strong reducing conditions (i.e. 10 mM DTT or 5 mM GSH) had little if any effect on Ca(2+) sensitivity (pCa(50) or n(H)). The effect of oxidants H(2)O(2) and DTDP depended on whether the fibre was relaxed (in pCa > 9) or activated during the exposure. In both fast- and slow-twitch fibres a 5 min exposure to 10 mM H(2)O(2) at pCa > 9 had no effect on pCa(50), causing only a reduction in n(H). In contrast, when fast-twitch fibres were activated in the presence of 10 mM H(2)O(2) (or 100 microM DTDP) there was a substantial increase in pCa(50) (by approximately 0.06 and 0.1, respectively), as well as larger decreases in n(H) than occurred in relaxed fibres, with all effects being reversed by DTT (10 mM, 10 min). In slow-twitch soleus fibres, the activation-dependent effect of DTDP was even greater (pCa(50) increased by ~0.35), and it was found that the rate of reversal in DTT was also increased by activation. A separate important phenomenon was that fast-twitch fibres that had been oxidised with H(2)O(2) or DTDP (while either relaxed or activated) showed a paradoxical increase in Ca(2+) sensitivity (~0.04 and 0.25 increase in pCa(50), respectively) when briefly exposed to the endogenous reductant GSH (5 mM, 2 min). This effect was reversed by DTT or longer (> 20 min) exposure to GSH, did not occur in slow-twitch soleus fibres, and may contribute to post-tetanic potentiation in fast-twitch muscle. Maximum force was not affected by any of the above treatments, whereas exposure to a high concentration of DTDP (1 mM) did greatly reduce force production. These findings reveal a number of novel and probably important effects of oxidation on the contractile apparatus in skeletal muscle fibres.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , 2,2'-Dipyridyl/pharmacology , Animals , Disulfides/pharmacology , Dithiothreitol/pharmacology , Glutathione/pharmacology , Hydrogen Peroxide/pharmacology , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Oxidants/pharmacology , Oxidation-Reduction , Rats , Rats, Long-Evans , Sulfhydryl Reagents/pharmacology , Time Factors
8.
Clin Exp Pharmacol Physiol ; 28(8): 668-74, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11473535

ABSTRACT

1. In skeletal muscle, excitation-contraction (E-C) coupling describes a cascade of cellular events initiated by an action potential (AP) at the surface membrane that ultimately results in muscle contraction. Being able to specifically manipulate the many processes that constitute E-C coupling, as well as the many factors that modulate these processes, has proven challenging. 2. One of the simplest methods of gaining access to the intracellular environment of the muscle fibre is to physically remove (mechanically skin) the surface membrane. In doing so, the myoplasmic environment is opened to external manipulation. 3. Surprisingly, even though the surface membrane is absent, it is still possible to activate both twitch and tetanic force responses in a mechanically skinned muscle fibre by generating an AP in the transverse tubular system. This proves that all the key steps in E-C coupling are retained in this preparation. 4. By using this technique, it is now possible to easily manipulate the myoplasmic environment and observe how altering individual factors affects the normal E-C coupling sequence. The effect of important factors, such as the redox state of the cell, parvalbumin and the sarcoplasmic reticulum Ca2+-ATPase, on twitch and tetanic force can now be specifically investigated independent of other factors.


Subject(s)
Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Animals , Calcium/metabolism , Clinical Laboratory Techniques , Electric Stimulation , Forecasting , Muscle Contraction
9.
Am J Physiol Cell Physiol ; 281(1): C207-14, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11401843

ABSTRACT

Mutations in the central domain of the skeletal muscle ryanodine receptor (RyR) cause malignant hyperthermia (MH). A synthetic peptide (DP4) in this domain (Leu-2442-Pro-2477) produces enhanced ryanodine binding and sensitized Ca2+ release in isolated sarcoplasmic reticulum, similar to the properties in MH, possibly because the peptide disrupts the normal interdomain interactions that stabilize the closed state of the RyR (Yamamoto T, El-Hayek R, and Ikemoto N. J Biol Chem 275: 11618-11625, 2000). Here, DP4 was applied to mechanically skinned fibers of rat muscle that had the normal excitation-contraction coupling mechanism still functional to determine whether muscle fiber responsiveness was enhanced. DP4 (100 microM) substantially potentiated the Ca2+ release and force response to caffeine (8 mM) and to low [Mg2+] (0.2 mM) in every fiber examined, with no significant effect on the properties of the contractile apparatus. DP4 also potentiated the response to submaximal depolarization of the transverse tubular system by ionic substitution. Importantly, DP4 did not significantly alter the size of the twitch response elicited by action potential stimulation. These results support the proposal that DP4 causes an MH-like aberration in RyR function and are consistent with the voltage sensor triggering Ca2+ release by destabilizing the closed state of the RyRs.


Subject(s)
Calcium/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Peptides/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Action Potentials/physiology , Animals , Caffeine/pharmacology , Humans , In Vitro Techniques , Magnesium/metabolism , Malignant Hyperthermia/genetics , Malignant Hyperthermia/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/drug effects , Peptides/genetics , Phosphodiesterase Inhibitors/pharmacology , Protein Structure, Tertiary , Rats , Rats, Long-Evans , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics , Swine , Tetrodotoxin/pharmacology
10.
Pflugers Arch ; 442(2): 197-203, 2001 May.
Article in English | MEDLINE | ID: mdl-11417214

ABSTRACT

This study investigated whether a high intracellular concentration of L(+)-lactate (30 mM) affects normal excitation-contraction coupling in skeletal muscle. Electrical stimulation was used to elicit action potentials in the (sealed) transverse-tubular system of mechanically skinned muscle fibres, giving rise to twitch and tetanic force responses. As the sarcolemma was absent, lactate could be applied to the cytoplasmic environment via the bathing solution (at a constant pH of 7.1) and its effect examined independently of other metabolic changes that occur during muscle fatigue. The presence of 30 mM lactate had virtually no effect on direct activation of the contractile apparatus by Ca2+. Lactate also had no significant effect on either the rate of rise or the peak of the twitch response, with the only detectable effect being a slight (13%) slowing in its relaxation rate. As the amplitude of the twitch response (approximately 60% of maximum force) may be regarded as a sensitive indicator of the amount of Ca2+ released by an action potential, there was evidently to change in Ca2+ release in the presence of lactate. Lactate also had no significant effect on the rate of rise and peak force of the tetanic response or on its subsequent relaxation. Additional experiments, in which the sarcoplasmic reticulum was emptied of Ca2+ (in a caffeine solution) and reloaded repeatedly, showed no significant effect of 30 mM lactate on Ca2+ uptake. This study shows that the presence of L(+)-lactate does not inhibit excitation-contraction coupling in mechanically skinned fibres.


Subject(s)
Lactic Acid/pharmacology , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Animals , Histological Techniques , In Vitro Techniques , Muscle Relaxation/drug effects , Rats , Rats, Long-Evans , Sarcoplasmic Reticulum/metabolism
11.
J Appl Physiol (1985) ; 89(2): 517-28, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10926634

ABSTRACT

The effects of high myoplasmic L-lactate concentrations (20-40 mM) at constant pH (7.1) were investigated on contractile protein function, voltage-dependent Ca(2+) release, and passive Ca(2+) leak from the sarcoplasmic reticulum (SR) in mechanically skinned fast-twitch (extensor digitorum longus; EDL) and slow-twitch (soleus) fibers of the rat. L-Lactate (20 mM) significantly reduced maximum Ca(2+)-activated force by 4 +/- 0.5% (n = 5, P < 0.05) and 5 +/- 0.4% (n = 6, P < 0.05) for EDL and soleus, respectively. The Ca(2+) sensitivity was also significantly decreased by 0.06 +/- 0. 002 (n = 5, P < 0.05) and 0.13 +/- 0.01 (n = 6, P < 0.001) pCa units, respectively. Exposure to L-lactate (20 mM) for 30 s reduced depolarization-induced force responses by ChCl substitution by 7 +/- 3% (n = 17, P < 0.05). This inhibition was not obviously affected by the presence of the lactate transport blocker quercetin (10 microM), or the chloride channel blocker anthracene-9-carboxylic acid (100 microM). L-Lactate (20 mM) increased passive Ca(2+) leak from the SR in EDL fibers (the integral of the response to caffeine was reduced by 16 +/- 5%, n = 9, P < 0.05) with no apparent effect in soleus fibers (100 +/- 2%, n = 3). These results indicate that the L-lactate ion per se has negligible effects on either voltage-dependent Ca(2+) release or SR Ca(2+) handling and exerts only a modest inhibitory effect on muscle contractility at the level of the contractile proteins.


Subject(s)
Lactic Acid/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Animals , Calcium/metabolism , Diffusion , Electrophysiology , Hydrogen-Ion Concentration , In Vitro Techniques , Magnesium/metabolism , Male , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/cytology , Muscle, Skeletal/ultrastructure , Pyruvic Acid/metabolism , Rats , Rats, Wistar , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/ultrastructure
12.
J Physiol ; 527 Pt 1: 131-7, 2000 Aug 15.
Article in English | MEDLINE | ID: mdl-10944176

ABSTRACT

1. Transverse electrical field stimulation (50 V cm-1, 2 ms duration) of mechanically skinned skeletal muscle fibres of the rat elicited twitch and tetanic force responses (36 +/- 4 and 83 +/- 4 % of maximum Ca2+-activated force, respectively; n = 23) closely resembling those in intact fibres. The responses were steeply dependent on the field strength and were eliminated by inclusion of 10 microM tetrodotoxin (TTX) in the (sealed) transverse tubular (T-) system of the skinned fibres and by chronic depolarisation of the T-system. 2. Spontaneous twitch-like activity occurred sporadically in many fibres, producing near maximal force in some instances (mean time to peak: 190 +/- 40 ms; n = 4). Such responses propagated as a wave of contraction longitudinally along the fibre at a velocity of 13 +/- 3 mm s-1 (n = 7). These spontaneous contractions were also inhibited by inclusion of TTX in the T-system and by chronic depolarisation. 3. We examined whether the T-tubular network was interconnected longitudinally using fibre segments that were skinned for only approximately 2/3 of their length, leaving the remainder of each segment intact with its T-system open to the bathing solution. After such fibres were exposed to TTX (60 microM), the adjacent skinned region (with its T-system not open to the solution) became unresponsive to subsequent electrical stimulation in approximately 50 % of cases (7/15), indicating that TTX was able to diffuse longitudinally inside the fibre via the tubular network over hundreds of sarcomeres. 4. These experiments show that excitation-contraction coupling in mammalian muscle fibres involves action potential propagation both transversally and longitudinally within the tubular system. Longitudinal propagation of action potentials inside skeletal muscle fibres is likely to be an important safety mechanism for reducing conduction failure during fatigue and explains why, in developing skeletal muscle, the T-system first develops as an internal longitudinal network.


Subject(s)
Action Potentials , Muscle Contraction , Muscle Fibers, Skeletal/physiology , Muscle Tonus , Muscle, Skeletal/physiology , Action Potentials/drug effects , Animals , Calcium/metabolism , Electric Conductivity , Electric Stimulation , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Potassium/metabolism , Rats , Rats, Long-Evans , Sarcolemma/metabolism , Sarcomeres/physiology , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/physiology , Sodium/metabolism , Tetrodotoxin/pharmacology
13.
Br J Pharmacol ; 126(8): 1717-24, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10372813

ABSTRACT

1. The effect of the alpha2-adrenoceptor agonist, terbutaline, was investigated on simultaneously measured force and intracellular free calcium ([Ca2+]i) in intact rat soleus muscle fibres, and on contractile protein function and Ca2+ content of the sarcoplasmic reticulum (SR) in skinned fibres. 2. Terbutaline (10 microM) had no significant effect on either resting force or [Ca2+]i. Exposure to terbutaline increased both the integral of the indo-1 ratio transient and peak twitch force by 37%. 3. At sub-maximal (10 Hz) stimulation frequencies, terbutaline accelerated force relaxation but had highly variable effects on tetanic force amplitude. The corresponding indo-1 ratio transients were significantly larger, and faster to decay than the controls. 4. Terbutaline increased tetanic force at near maximal stimulation frequencies (50 Hz) by increasing tetanic [Ca2+]i. Force relaxation was accelerated at this frequency with no significant change in the indo-1 ratio transient decay rate. 5. All of terbutaline's effects on force and indo-1 ratio transients in intact fibres were completely blocked and reversed by ICI 118551 (1 microM). 6. Mechanically skinned fibres isolated from intact muscles pre-treated with terbutaline showed no significant changes in SR Ca2+ content, myofilament [Ca2+]i-sensitivity or maximum force generating capacity. 7. The results suggest that terbutaline primarily modulates force by altering the amplitude and decay rate of the [Ca2+]i transient via phosphorylation of both the ryanodine receptor (RR) and the SR pump regulatory protein, phospholamban (PLB). The high variability of responses of slow-twitch muscles to beta2-agonists probably reflects individual differences in basal phosphorylation levels of PLB relative to that of RR.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Calcium/metabolism , Muscle Contraction/drug effects , Muscle Fibers, Slow-Twitch/drug effects , Muscle Fibers, Slow-Twitch/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Terbutaline/pharmacology , Adrenergic beta-Antagonists/pharmacology , Animals , Drug Interactions , In Vitro Techniques , Male , Muscle Contraction/physiology , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Propanolamines/pharmacology , Rats , Rats, Wistar , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/physiology , Terbutaline/antagonists & inhibitors
14.
J Physiol ; 512 ( Pt 1): 97-108, 1998 Oct 01.
Article in English | MEDLINE | ID: mdl-9729620

ABSTRACT

1. Single mechanically skinned fibres from rat extensor digitorum longus (EDL) muscles were used to investigate the mechanisms underlying inorganic phosphate (Pi) movements between the myoplasm and the sarcoplasmic reticulum (SR). Force transients elicited by caffeine/low Mg2+ application were used to assess the rate of Pi-induced inhibition of SR Ca2+ release and the subsequent recovery of Ca2+ release following removal of myoplasmic Pi. 2. Myoplasmic Pi reduced SR Ca2+ release in a concentration- and time-dependent manner. A 10 s exposure to 10, 20 and 50 mM myoplasmic Pi reduced SR Ca2+ release by 12 +/- 9, 29 +/- 5 and 82 +/- 5 %, respectively. 3. Removal of myoplasmic ATP at the time of Pi exposure significantly increased the rate and extent of SR Ca2+ release inhibition. For example, Ca2+ release was reduced by 86 +/- 6 % (n = 6) after 20 s exposure to 20 mM Pi in the absence of ATP compared with only 47 +/- 5 % (n = 5) in the presence of ATP. 4. The half and full recovery times for SR Ca2+ release following washout of myoplasmic Pi were 35 s and approximately 7 min, respectively. Recovery of Ca2+ release was unaffected by the absence of ATP during washout of Pi but was prevented when fibres were washed in the presence of high myoplasmic Pi (30 mM). Neither the Pi transporter blocker phenylphosphonic acid (PHPA) nor the anion channel blockers anthracene-9-carboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) affected the rate of recovery of SR Ca2+ release. 5. These results show that Pi entry and exit from the SR occur primarily through a passive pathway that is insensitive to well-known anion channel blockers. Pi inhibition of SR Ca2+ release appears to be a complicated phenomenon influenced by the rate of Pi movement across the SR as well as by the rate, extent and species of Ca2+-Pi precipitate formation in the SR lumen. The more rapid inhibitory effect of Pi in the absence of myoplasmic ATP suggests that Pi may inhibit SR Ca2+ release more efficiently during the later stages of fatigue.


Subject(s)
Calcium/metabolism , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Phosphates/metabolism , Adenosine Triphosphate/metabolism , Animals , Caffeine/pharmacology , Kinetics , Magnesium/pharmacology , Male , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Rats , Rats, Wistar , Sarcoplasmic Reticulum/metabolism
15.
J Muscle Res Cell Motil ; 19(1): 53-65, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9477377

ABSTRACT

The effect of the dihydropyridine, nifedipine, on excitation-contraction coupling was compared in toad and rat skeletal muscle, using the mechanically skinned fibre technique, in order to understand better the apparently disparate results of previous studies and to examine recent proposals on the importance of certain intracellular factors in determining the efficacy of dihydropyridines. In twitch fibres from the iliofibularis muscle of the toad, 10 microM nifedipine completely inhibited depolarization-induced force responses within 30 s, without interfering with direct activation of the Ca(2+)-release channels by caffeine application or reduction of myoplasmic [Mg2+]. At low concentrations of nifedipine, inhibition was considerably augmented by repeated depolarizations, with half-maximal inhibition occurring at < 0.1 microM nifedipine. In contrast, in rat extensor digitorum longus (EDL) fibres 1 microM nifedipine had virtually no effect on depolarization-induced force responses, and 10 microM nifedipine caused only approximately 25% reduction in the responses, even upon repeated depolarizations. In rat fibres, 10 microM nifedipine shifted the steady-state force inactivation curve to more negative potentials by < 11 mV, whereas in toad fibres the potent inhibitory effect of nifedipine indicated a much larger shift. The inhibitory effect of nifedipine in rat fibres was little, if at all, increased by the absence of Ca2+ in the transverse tubular (t-) system, provided that the Ca2+ was replaced with sufficient Mg2+. The presence of the reducing agents dithiothreitol (10 mM) or glutathione (10 mM) in the solution bathing a toad skinned fibre did not reduce the inhibitory effect of nifedipine, suggesting that the potency of nifedipine in toad skinned fibres was not due to the washout of intracellular reducing agents. The results are considered in terms of a model that can account for the markedly different effects of nifedipine on the two putative functions of the dihydropyridine receptor, as both t-system calcium channel and a voltage-sensor controlling Ca2+ release.


Subject(s)
Muscle Contraction/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Nifedipine/pharmacology , Animals , Bufo marinus , Calcium/pharmacology , Electrophysiology , Magnesium/pharmacology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Rats , Rats, Inbred Strains , Reducing Agents/pharmacology
16.
J Muscle Res Cell Motil ; 19(1): 67-74, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9477378

ABSTRACT

The effect of inositol trisphosphate (IP3) was investigated in mechanically skinned fibres which had the endogenous level of sarcoplasmic reticulum (SR) Ca2+ and in which the normal excitation-contraction (E-C) coupling mechanism was still functional. Application of 50 or 100 microM IP3 failed to induce a detectable force response in any such skinned fibre from either the extensor digitorum longus muscle of the rat or iliofibularis muscle of the toad, irrespective of whether the fibre was: (a) in its normally polarized, resting state; (b) chronically depolarized to inactivate the voltage sensors; (c) paralysed with D600; or (d) depolarized to threshold for force activation. Furthermore, the size of the response to subsequent depolarization or exposure to caffeine (2mM) or reduced myoplasmic [Mg2+] indicated that little if any Ca2+ had been lost from the SR during the period of IP3 exposure (> or = 1 min). Also, IP3 did not induce a detectable force response when SR Ca2+ uptake was potently inhibited with 20 microM TBQ. Exposure to IP3 (50 microM) slightly potentiated the peak force response to depolarization in toad fibres, and this was probably because of an accompanying small increase in Ca2+ sensitivity of the contractile apparatus. These results appear inconsistent with the proposal that IP3 acts as the second messenger in E-C coupling in skeletal muscle.


Subject(s)
Inositol 1,4,5-Trisphosphate/pharmacology , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Animals , Bufo marinus , Electric Stimulation , Electrophysiology , Magnesium/physiology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology
17.
J Physiol ; 496 ( Pt 3): 809-25, 1996 Nov 01.
Article in English | MEDLINE | ID: mdl-8930846

ABSTRACT

1. The mechanically skinned fibre technique was used to examine the role of oxidation-reduction in the control of Ca2+ release and contraction in rat and toad skeletal muscle fibres under physiological conditions of myoplasmic [Mg2+] and [ATP] and sarcoplasmic reticulum (SR) Ca2+ load. 2. None of the reducing agents, dithiothreitol (DTT, 10 mM), glutathione (GSH, 10 mM) or cysteine (1 and 5 mM), had any detectable effect on the peak force, duration or the total number of depolarization-induced responses that could be elicited in skinned fibres from either toad or rat muscle, except for a slight alteration in one case (GSH on the duration of the response in rat fibres) caused by an effect of the agent of the Ca2+ sensitivity of the contractile apparatus. 3. Application of the reactive disulphide, 2,2'-dithiodipyridine (DTDP, 100 microM), a potent oxidizing agent, never induced any measurable force response or noticeable depletion of SR Ca2+ in any fibre under the conditions used. When all Ca2+ uptake was prevented, DTDP treatment of rat fibres was found to cause a 2- to 3-fold increase in the low rate of Ca2+ "leak' from the SR. DTDP treatment also increased the responsiveness of toad muscle fibres to 1 or 2 mM caffeine. These effects could be largely reversed by treatment with DTT. These results indicate that oxidation of the Ca2+ release channel does not cause substantial channel opening under physiological conditions. 4. Depolarization-induced force responses in both rat and toad fibres were rapidly abolished in the presence of DTDP (10 or 100 microM), in a manner favoured by inactivation of the voltage sensors. The relatively impermeant oxidant, 5,5'-dithionitrobenzoic acid (DTNB, 100 microM), had an effect very similar to DTDP if applied intracellularly, but unlike DTDP, had little or no effect if applied extracellularly (at 5 mM) before skinning. Depolarization-induced responses could be restored by treatment with DTT (10 mM). Intracellular application of the sulfhydryl-alkylating agent, N-ethylmaleimide (NEM, 100 microM), had effects very similar to DTDP and DTNB. 5. These results are not consistent with the proposal that excitation-contraction coupling in skeletal muscle primarily involves the oxidative linkage of the voltage sensors to the Ca2+ release channels, but do show that oxidation of an intracellularly accessible site can interfere with the coupling, in a process made more sensitive by voltage sensor inactivation.


Subject(s)
Calcium/metabolism , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Oxidants/pharmacology , Reducing Agents/pharmacology , 2,2'-Dipyridyl/analogs & derivatives , 2,2'-Dipyridyl/pharmacology , Animals , Bufo marinus , Cysteine/pharmacology , Disulfides/pharmacology , Dithionitrobenzoic Acid/pharmacology , Dithiothreitol/pharmacology , Glutathione/pharmacology , In Vitro Techniques , Membrane Potentials/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Rats , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sulfhydryl Reagents/pharmacology
18.
J Physiol ; 474(2): 319-29, 1994 Jan 15.
Article in English | MEDLINE | ID: mdl-7516428

ABSTRACT

1. Intracellularly applied heparin was found to cause a novel, use-dependent block of excitation-contraction (E-C) coupling in skinned skeletal muscle fibres of the toad. After one to four depolarizations in the presence of 100 micrograms ml-1 heparin, no further depolarization-induced responses could be elicited, even though addition of caffeine or lowering [Mg2+] could still induce massive Ca2+ release. This effect could not be reversed by extensive wash-out of the heparin (> 15 min). 2. Heparin (100 micrograms ml-1) did not abolish subsequent depolarization-induced responses if applied while the voltage sensors were in either their resting or inactivated states, that is (a) while a fibre remained fully polarized, (b) when a fibre was already chronically depolarized or (c) after a fibre had been depolarized in the presence of D600 (gallopamil) and then repolarized. 3. When a toad fibre was depolarized in heparin, with the associated Ca2+ release blocked by the presence of 10 mM intracellular Mg2+, subsequent E-C coupling was abolished. Heparin did not interrupt E-C coupling when Ca2+ release was triggered in the absence of any depolarization, by either caffeine or low [Mg2+]. Thus, the opening of the Ca2+ release channels was neither necessary nor sufficient for heparin to abolish E-C coupling. 4. Heparin had direct effects on the contractile apparatus in toad fibres, increasing the Ca2+ sensitivity and decreasing the maximum Ca(2+)-activated force. These effects could only be partly reversed by extensive wash-out of heparin. 5. At 100 micrograms ml-1, both low molecular weight heparin and pentosanpolysulphate, another highly sulphated polysaccharide, were less effective than heparin in blocking the depolarization-induced response and in changing the properties of the contractile apparatus, and these effects could be substantially reversed by wash-out. Two other polyanions, de-N-sulphated heparin (100 micrograms ml-1), which lacked N-sulphate groups, and polyglutamate (500 micrograms ml-1), had no measurable effect on either E-C coupling or the contractile apparatus. 6. In skinned fibres of the extensor digitorum longus muscle of the rat, 100 micrograms ml-1 heparin had little or no effect on E-C coupling and on the Ca2+ sensitivity of the contractile apparatus, but caused a larger reduction of the maximum Ca(2+)-activated force than in skinned fibres of the toad. 7. These results indicate that heparin blocks E-C coupling in toad muscle if, and only if, it is present when the voltage sensors are activated by depolarization.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Heparin/pharmacology , Muscles/drug effects , Animals , Bufo marinus , Caffeine/pharmacology , Calcium/physiology , Electrophysiology , Gallopamil/pharmacology , Heparin, Low-Molecular-Weight/pharmacology , In Vitro Techniques , Magnesium/pharmacology , Muscle Contraction/drug effects , Neuromuscular Depolarizing Agents/pharmacology , Pentosan Sulfuric Polyester/pharmacology , Rats , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...