Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 15(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683129

ABSTRACT

Various gadolinium compounds have been proposed as contrasting agents for magnetic resonance imaging (MRI). In this study, we suggested a new synthesis method of gadolinium ferrate/trigadolinium pentairon(III) oxide nanoparticles (GF/TPO NPs). The specific surface area of gadolinium ferrate (GdFeO3) and trigadolinium pentairon(III) oxide (Gd3Fe5O12) nanoparticles was equal to 42 and 66 m2/g, respectively. The X-ray diffraction analysis confirmed that the synthesized substances were GdFeO3 and Gd3Fe5O12. The gadolinium content in the samples was close to the theoretically calculated value. The free gadolinium content was negligible. Biodistribution of the GF/TPO NPs was studied in rats by fluorescent imaging and Fe2+/Fe3+ quantification demonstrating predominant accumulation in such organs as lung, kidney, and liver. We showed in the in vivo rat model of myocardial ischemia-reperfusion injury that GF/TPO NPs are able to target the area of myocardial infarction as evidenced by the significantly greater level of fluorescence. In perspective, the use of fluorescently labeled GF/TPO NPs in multimodal imaging may provide basis for high-resolution 3D reconstruction of the infarcted heart, thereby serving as unique theranostic platform.

2.
J Phys Chem Lett ; 12(41): 10015-10024, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34618465

ABSTRACT

We present a new modification of graphene oxide with very high content (85 wt %) of oxygen-containing functional groups (hydroxy, epoxy, lactol, carboxyl, and carbonyl groups) that forms stable aqueous dispersion in up to 9 g·L-1 concentration solutions. A novel faster method of the synthesis is described that produces up to 1 kg of the material and allows controlling the particle size in solution. The synthesized compound was characterized by various physicochemical methods and molecular dynamics modeling, revealing a unique structure in the form of a multilayered wafer of several sheets thick, where each sheet is highly corrugated. The ragged structure of the sheets forms pockets with hindered mobility of water that leads to the possibility of trapping guest molecules.

3.
J Biotechnol ; 331: 83-98, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33727085

ABSTRACT

Silica is silicon dioxide, which, depending on the production method, can exist in various amorphous forms with varying specific surface area, particle size, pore volume and size, and, as a result, with different physicochemical and sorption characteristics. The presence of silanol groups on the surface of silicas provides the possibility of its further functionalisation. In addition, the developed specific surface of Aerosil allows to obtain composites with a high content of biologically active substances. In this work, we studied the biocompatibility of a composite based on Aerosil 380 and carboxylated fullerene C60[C(COOH)2]3, namely: haemolysis (spontaneous and photoinduced), platelet aggregation, binding to HSA, cyto- and genotoxicity, antiradical activity. Interest in the creation of this nanomaterial is due to the fact that carboxylated fullerenes have potential applications in various fields of biomedicine, including the ability to bind reactive oxygen species, inhibition of tumour development, inactivation of viruses and bacteria. The obtained composite can be used for the immobilisation of various drugs and the further development of drugs for theranostics.


Subject(s)
Fullerenes , Nanocomposites , Carboxylic Acids , Reactive Oxygen Species , Silicon Dioxide
4.
Drug Deliv ; 23(5): 1747-56, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26203803

ABSTRACT

Silicon-containing nanoparticles (NPs) are considered promising drug carriers for targeted drug delivery. In this study, we investigated the physical and chemical properties of silicon-containing NPs, including silica and organomodified silica NPs (SiO2NPs and OrSiO2NPs, respectively), with different surface modifications, with the aim of increasing drug-loading efficiency. In addition, we described the original synthesis methods of different sizes of OrSiO2NPs, as well as new hybrid OrSiO2NPs with a silica core (SiO2 + OrSiO2NPs). Animal experiments revealed that the silicon-containing NPs investigated were non-toxic, as evidenced by a lack of hemodynamic response after intravenous administration. Bioelimination studies showed rapid renal excretion of OrSiO2NPs. In drug release kinetics studies, adenosine was immobilized on SiO2NPs using three different approaches: physical adsorption, ionic, and covalent bonding. We observed that the rate of adenosine desorption critically depended on the type of immobilization; therefore, adenosine release kinetics can be adjusted by SiO2NP surface modification technique. Adsorption of adenosine on SiO2 + OrSiO2NPs resulted in a significant attenuation of adenosine-induced hypotension and bradycardia.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Silicon Dioxide/chemical synthesis , Silicon Dioxide/toxicity , Silicon/chemistry , Adsorption , Drug Liberation , Nanoparticles/toxicity , Silicon Dioxide/chemistry , Silicon Dioxide/metabolism
5.
Int J Nanomedicine ; 5: 231-7, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20463939

ABSTRACT

The clinical outcome of patients with ischemic heart disease can be significantly improved with the implementation of targeted drug delivery into the ischemic myocardium. In this paper, we present our original findings relevant to the problem of therapeutic heart targeting with use of nanoparticles. Experimental approaches included fabrication of carbon and silica nanoparticles, their characterization and surface modification. The acute hemodynamic effects of nanoparticle formulation as well as nanoparticle biodistribution were studied in male Wistar rats. Carbon and silica nanoparticles are nontoxic materials that can be used as carriers for heart-targeted drug delivery. Concepts of passive and active targeting can be applied to the development of targeted drug delivery to the ischemic myocardial cells. Provided that ischemic heart-targeted drug delivery can be proved to be safe and efficient, the results of this research may contribute to the development of new technologies in the pharmaceutical industry.


Subject(s)
Cardiotonic Agents/administration & dosage , Cardiotonic Agents/pharmacokinetics , Drug Carriers/administration & dosage , Myocardial Ischemia/drug therapy , Myocardial Ischemia/metabolism , Nanoparticles/administration & dosage , Silicon Dioxide/chemistry , Animals , Cardiotonic Agents/chemistry , Drug Carriers/chemical synthesis , Drug Carriers/pharmacokinetics , Male , Nanoparticles/chemistry , Organ Specificity , Rats , Rats, Wistar , Tissue Distribution , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL