Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Am J Vet Res ; 83(11): 1-11, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36215210

ABSTRACT

OBJECTIVE: African Horse Sickness (AHS) is a vector-borne disease endemic to sub-Saharan Africa caused by African Horse Sickness Virus (AHVS). Infections in naïve horses have high morbidity and mortality rates. AHS pathogenesis is not well understood; neither the hematologic changes nor acute phase response occurring during infection has been fully evaluated. The study's objective was to characterize the hematologic changes and acute phase response during experimental infection with AHSV. ANIMALS: 4 horses negative for AHSV group-specific antibodies. PROCEDURES: In this prospective, longitudinal study conducted between November 23 and December 2, 2020, horses were experimentally infected with AHSV, and blood samples were obtained before inoculation and then every 12 hours until euthanasia. Hematologic changes and changes for serum amyloid A (SAA) and iron concentration were evaluated over time using a general linear model including natural logarithm of sampling time. RESULTS: All horses were humanely euthanized due to severe clinical signs typical of AHS. Median Hct increased significantly, and the median WBC count, monocyte count, eosinophil count, and myeloperoxidase index changed significantly in all horses over time. Horses developed marked thrombocytopenia (median, 48 X 103 cells/µL; range, 21 X 103 to 58 X 103 cells/µL) while markers of platelet activation also changed significantly. Median SAA increased and serum iron concentration decreased significantly over time. CLINICAL RELEVANCE: Results indicated severe thrombocytopenia with platelet activation occurs during infection with AHSV. Changes in acute phase reactants SAA and iron, while significant, were unexpectedly mild and might not be useful clinical markers.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Horse Diseases , Thrombocytopenia , Animals , Horses , Acute-Phase Reaction/veterinary , Longitudinal Studies , Prospective Studies , African Horse Sickness/epidemiology , Thrombocytopenia/veterinary , Iron , Acute-Phase Proteins
2.
Viruses ; 14(10)2022 10 04.
Article in English | MEDLINE | ID: mdl-36298748

ABSTRACT

African horse sickness is a deadly and highly infectious disease of equids, caused by African horse sickness virus (AHSV). AHSV is one of the most economically important members of the Orbivirus genus. AHSV is transmitted by the biting midge, Culicoides, and therefore replicates in both insect and mammalian cell types. Structural protein VP7 is a highly conserved major core protein of orbiviruses. Unlike any other orbivirus VP7, AHSV VP7 is highly insoluble and forms flat hexagonal crystalline particles of unknown function in AHSV-infected cells and when expressed in mammalian or insect cells. To examine the role of AHSV VP7 in virus replication, a plasmid-based reverse genetics system was used to generate a recombinant AHSV that does not form crystalline particles. We characterised the role of VP7 crystalline particle formation in AHSV replication in vitro and found that soluble VP7 interacted with viral proteins VP2 and NS2 similarly to wild-type VP7 during infection. Interestingly, soluble VP7 was found to form uncharacteristic tubule-like structures in infected cells which were confirmed to be as a result of unique VP7-NS1 colocalisation. Furthermore, it was found that VP7 crystalline particles play a role in AHSV release and yield. This work provides insight into the role of VP7 aggregation in AHSV cellular pathogenesis and contributes toward the understanding of the possible effects of viral protein aggregation in other human virus-borne diseases.


Subject(s)
African Horse Sickness Virus , Ceratopogonidae , Animals , Humans , African Horse Sickness Virus/genetics , Protein Aggregates , Virus Replication , Viral Core Proteins/metabolism , Ceratopogonidae/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Mammals
3.
Vaccine ; 38(45): 7108-7117, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32921506

ABSTRACT

African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae causing African Horse Sickness (AHS) in equids with a mortality of about 95% in naïve horses. AHS causes serious losses in developing countries where horses play a central role in draft power and transportation. There are nine AHSV serotypes inducing no or low cross-neutralizing antibodies. AHSV is spread by biting Culicoides midges. AHS is endemic in sub-Saharan Africa, and a serious threat outside Africa, since Culicoides species in moderate climate conditions are spreading the closely related bluetongue virus. AHS outbreaks will be devastating for the equestrian industry in developed countries. Live-attenuated vaccines (LAVs) are licensed, marketed and in use in Africa. Their application is controversial with regard to safety issues. LAVs are not allowed in AHS-free countries. We here studied inactivated AHSV with different adjuvants in guinea pigs and horses. Subcutaneous and intramuscular vaccination were studied in horses. Local reactions were observed after prime and boost vaccination. In general, neutralizing antibodies (nAbs) titres were very low after prime vaccination, whereas boost vaccination resulted in high nAb titres for some adjuvants. Vaccinated horses were selected based on local reactions and nAb titres to study efficacy. Unfortunately, not all vaccinated horses survived virulent AHSV infection. Further, most survivors temporarily developed clinical signs and viremia. Further, the current prototype inactivated AHS vaccine is not suitable as emergency vaccine, because onset of protection is slow and requires boost vaccinations. On the other hand, inactivated AHS vaccine is completely safe with respect to virus spread, and incorporation of the DIVA principle based on NS3/NS3a serology and exploring a vaccine production platform for other serotypes is feasible. A superior adjuvant increasing the protective response without causing local reactions will be required to develop payable and acceptable inactivated AHS vaccines.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Viral Vaccines , Africa , African Horse Sickness/prevention & control , Animals , Guinea Pigs , Horses , Vaccines, Inactivated
4.
J Virol ; 94(1)2019 12 12.
Article in English | MEDLINE | ID: mdl-31619556

ABSTRACT

Rotavirus (RV) replicates in round-shaped cytoplasmic viral factories, although how they assemble remains unknown. During RV infection, NSP5 undergoes hyperphosphorylation, which is primed by the phosphorylation of a single serine residue. The role of this posttranslational modification in the formation of viroplasms and its impact on virus replication remain obscure. Here, we investigated the role of NSP5 during RV infection by taking advantage of a modified fully tractable reverse-genetics system. A trans-complementing cell line stably producing NSP5 was used to generate and characterize several recombinant rotaviruses (rRVs) with mutations in NSP5. We demonstrate that an rRV lacking NSP5 was completely unable to assemble viroplasms and to replicate, confirming its pivotal role in rotavirus replication. A number of mutants with impaired NSP5 phosphorylation were generated to further interrogate the function of this posttranslational modification in the assembly of replication-competent viroplasms. We showed that the rRV mutant strains exhibited impaired viral replication and the ability to assemble round-shaped viroplasms in MA104 cells. Furthermore, we investigated the mechanism of NSP5 hyperphosphorylation during RV infection using NSP5 phosphorylation-negative rRV strains, as well as MA104-derived stable transfectant cell lines expressing either wild-type NSP5 or selected NSP5 deletion mutants. Our results indicate that NSP5 hyperphosphorylation is a crucial step for the assembly of round-shaped viroplasms, highlighting the key role of the C-terminal tail of NSP5 in the formation of replication-competent viral factories. Such a complex NSP5 phosphorylation cascade may serve as a paradigm for the assembly of functional viral factories in other RNA viruses.IMPORTANCE The rotavirus (RV) double-stranded RNA genome is replicated and packaged into virus progeny in cytoplasmic structures termed viroplasms. The nonstructural protein NSP5, which undergoes a complex hyperphosphorylation process during RV infection, is required for the formation of these virus-induced organelles. However, its roles in viroplasm formation and RV replication have never been directly assessed due to the lack of a fully tractable reverse-genetics (RG) system for rotaviruses. Here, we show a novel application of a recently developed RG system by establishing a stable trans-complementing NSP5-producing cell line required to rescue rotaviruses with mutations in NSP5. This approach allowed us to provide the first direct evidence of the pivotal role of this protein during RV replication. Furthermore, using recombinant RV mutants, we shed light on the molecular mechanism of NSP5 hyperphosphorylation during infection and its involvement in the assembly and maturation of replication-competent viroplasms.


Subject(s)
Reverse Genetics/methods , Rotavirus/genetics , Rotavirus/physiology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Assembly/physiology , Animals , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Cell Line , Cytoplasm/virology , Gene Expression Regulation, Viral , Gene Knockout Techniques , Mutation , Organelles , Phosphorylation , RNA, Viral/isolation & purification , Rotavirus Infections/virology , Sequence Deletion , Transfection , Viral Nonstructural Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
5.
Arch Virol ; 164(5): 1479-1483, 2019 May.
Article in English | MEDLINE | ID: mdl-30848387

ABSTRACT

Eight different double-stranded RNA (dsRNA) molecules were found in the wild-type fungal strain Botrytis cinerea CCg427. The electrophoretic profile displayed molecules with approximate sizes of 1, 1.3, 1.6, 1.8, 3.3, 4.1, 6.5, and 12 kbp. Sequences analysis of the molecules in the 6.5-kbp band revealed the presence of two different dsRNA molecules (dsRNA-1 and dsRNA-2) of 6192 and 5567 bp. Each molecule contained a unique ORF (5487 and 4836 nucleotides in dsRNA-1 and dsRNA-2, respectively). The ORF of dsRNA-1 encodes a 205-kDa polypeptide that shares 58% amino acid sequence identity with the RNA-dependent RNA polymerase (RdRp) encoded by dsRNA-1 of Alternaria sp. SCFS-3 botybirnavirus (ABRV1), whereas the ORF of dsRNA-2 encodes a 180-kDa polypeptide that shares 52% amino acid sequence identity with an unclassified protein encoded by dsRNA-2 of ABRV1. Genome organization and phylogenetic analysis based on the amino acid sequences of RdRps in members of different dsRNA virus families showed that the dsRNAs in the 6.5-kbp band correspond to the genome of a new botybirnavirus that we have named "Botrytis cinerea botybirnavirus 1".


Subject(s)
Botrytis/virology , Fungal Viruses/genetics , Genome, Viral/genetics , RNA Viruses/genetics , RNA, Viral/genetics , Amino Acid Sequence , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Phylogeny , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics
6.
Transbound Emerg Dis ; 66(1): 83-90, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30070433

ABSTRACT

The laboratory diagnosis of African horse sickness (AHS) is important for: (a) demonstrating freedom from infection in a population, animals or products for trade (b) assessing the efficiency of eradication policies; (c) laboratory confirmation of clinical diagnosis; (d) estimating the prevalence of AHS infection; and (e) assessing postvaccination immune status of individual animals or populations. Although serological techniques play a secondary role in the confirmation of clinical cases, their use is very important for all the other purposes due to their high throughput, ease of use and good cost-benefit ratio. The main objective of this study was to support the validation of AHS VP7 Blocking ELISA up to the Stage 3 of the World Animal Health Organization (OIE) assay validation pathway. To achieve this, a collaborative ring trial, which included all OIE Reference Laboratories and other AHS-specialist diagnostic centres, was conducted in order to assess the diagnostic performance characteristics of the VP7 Blocking ELISA. In this trial, a panel of sera of different epidemiological origin and infection status was used. Through this comprehensive evaluation we can conclude that the VP7 Blocking ELISA satisfies the OIE requirements of reproducibility. The VP7 Blocking ELISA, in its commercial version is ready to enter Stage 4 of the validation pathway (Programme Implementation). Specifically, this will require testing the diagnostic performance of the assay using contemporary serum samples collected during control campaigns in endemic countries.


Subject(s)
African Horse Sickness Virus/isolation & purification , African Horse Sickness/diagnosis , Diagnostic Tests, Routine/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Horse Diseases/diagnosis , Animals , Antigens, Viral/blood , Diagnostic Tests, Routine/methods , Enzyme-Linked Immunosorbent Assay/methods , Horses , Reproducibility of Results , Viral Core Proteins/blood
7.
Vaccine ; 36(15): 1925-1933, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29525278

ABSTRACT

African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. Currently, nine serotypes have been defined showing limited cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African Horse Sickness (AHS) in equids with a mortality up to 95% in naïve domestic horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates are competent vectors of closely related bluetongue virus. AHS outbreaks cause huge economic losses in developing countries. In the developed world, outbreaks will result in losses in the equestrian industry and will have an enormous emotional impact on owners of pet horses. Live-attenuated vaccine viruses (LAVs) have been developed, however, safety of these LAVs are questionable due to residual virulence, reversion to virulence, and risk on virulent variants by reassortment between LAVs or with field AHSV. Research aims vaccines with improved profiles. Reverse genetics has recently being developed for AHSV and has opened endless possibilities including development of AHS vaccine candidates, such as Disabled Infectious Single Animal (DISA) vaccine. Here, virulent AHSV5 was recovered and its high virulence was confirmed by experimental infection of ponies. 'Synthetically derived' virulent AHSV5 with an in-frame deletion of 77 amino acids codons in genome segment 10 encoding NS3/NS3a protein resulted in similar in vitro characteristics as published NS3/NS3a knockout mutants of LAV strain AHSV4LP. In contrast to its highly virulent ancestor virus, this deletion AHSV5 mutant (DISA5) was completely safe for ponies. Two vaccinations with DISA5 as well as two vaccinations with DISA vaccine based on LAV strain AHSV4LP showed protection against lethal homologous AHSV. More research is needed to further improve efficacy, to explore the AHS DISA vaccine platform for all nine serotypes, and to study the vaccine profile in more detail.


Subject(s)
African Horse Sickness Virus/genetics , African Horse Sickness Virus/immunology , African Horse Sickness/immunology , African Horse Sickness/prevention & control , Sequence Deletion , Vaccines, Attenuated/immunology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Viral Vaccines/immunology , African Horse Sickness/pathology , African Horse Sickness/virology , African Horse Sickness Virus/pathogenicity , Amino Acids/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , Codon , Cricetinae , Immunization , Seroconversion , Time Factors , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vero Cells , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Virulence
9.
J Virol ; 91(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27903804

ABSTRACT

The Reoviridae family consists of nonenveloped multilayered viruses with a double-stranded RNA genome consisting of 9 to 12 genome segments. The Orbivirus genus of the Reoviridae family contains African horse sickness virus (AHSV), bluetongue virus, and epizootic hemorrhagic disease virus, which cause notifiable diseases and are spread by biting Culicoides species. Here, we used reverse genetics for AHSV to study the role of outer capsid protein VP2, encoded by genome segment 2 (Seg-2). Expansion of a previously found deletion in Seg-2 indicates that structural protein VP2 of AHSV is not essential for virus replication in vitro In addition, in-frame replacement of RNA sequences in Seg-2 by that of green fluorescence protein (GFP) resulted in AHSV expressing GFP, which further confirmed that VP2 is not essential for virus replication. In contrast to virus replication without VP2 expression in mammalian cells, virus replication in insect cells was strongly reduced, and virus release from insect cells was completely abolished. Further, the other outer capsid protein, VP5, was not copurified with virions for virus mutants without VP2 expression. AHSV without VP5 expression, however, could not be recovered, indicating that outer capsid protein VP5 is essential for virus replication in vitro Our results demonstrate for the first time that a structural viral protein is not essential for orbivirus replication in vitro, which opens new possibilities for research on other members of the Reoviridae family. IMPORTANCE: Members of the Reoviridae family cause major health problems worldwide, ranging from lethal diarrhea caused by rotavirus in humans to economic losses in livestock production caused by different orbiviruses. The Orbivirus genus contains many virus species, of which bluetongue virus, epizootic hemorrhagic disease virus, and African horse sickness virus (AHSV) cause notifiable diseases according to the World Organization of Animal Health. Recently, it has been shown that nonstructural proteins NS3/NS3a and NS4 are not essential for virus replication in vitro, whereas it is generally assumed that structural proteins VP1 to -7 of these nonenveloped, architecturally complex virus particles are essential. Here we demonstrate for the first time that structural protein VP2 of AHSV is not essential for virus replication in vitro Our findings are very important for virologists working in the field of nonenveloped viruses, in particular reoviruses.


Subject(s)
African Horse Sickness Virus/physiology , African Horse Sickness/virology , Capsid Proteins/metabolism , Virus Replication , African Horse Sickness Virus/classification , Animals , Capsid Proteins/genetics , Cricetinae , Gene Expression , Gene Expression Regulation, Viral , Genome, Viral , Horses , Mice , Mutation , Phenotype , RNA, Double-Stranded , RNA, Viral , Sequence Deletion , Serogroup , Transcription, Genetic , Virus Release
10.
Genome Announc ; 4(6)2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27834707

ABSTRACT

Lumpy skin disease virus (LSDV) causes an economically important disease in cattle. Here, we report the complete genome sequences of three LSDV strains obtained directly from the live attenuated vaccines: Lumpyvax (MSD Animal Health), Herbivac LS (Deltamune) and Lumpy Skin Disease Vaccine (Onderstepoort Biological Products).

11.
Vet Ital ; 52(3-4): 291-292, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27723038

ABSTRACT

Bluetongue virus (BTV) was sporadically isolated over a four year period (2010-2014) from several alpaca carcasses that were presented for necropsy at the Western Cape Provincial Veterinary Laboratory, South Africa. Typically, the a ected animals had a history of acute dyspnoea and progressive weakness before death. Consistent hydrothorax and severe lung oedema in all lead to a preliminary diagnosis of Bluetongue, despite the absence of ulceration and hyperaemia of the oral mucosa which is characteristic of this viral infection in sheep. The diagnosis was con rmed by virus isolation in embryonated eggs and subsequent sequencing of the extracted RNA. Assembled sequences were subjected to Blast analysis and two of the isolates could be veri ed as BTV 3. These cases, originating from the Western Cape Province of South Africa, represents the rst o cial report of BTV infection in alpacas in Africa and demonstrates the susceptibility of the species to this disease when maintained in BTV endemic areas.


Subject(s)
Bluetongue virus/isolation & purification , Bluetongue/virology , Camelids, New World/virology , Animals , South Africa
12.
Virology ; 499: 144-155, 2016 12.
Article in English | MEDLINE | ID: mdl-27657835

ABSTRACT

In an effort to simplify and expand the utility of African horse sickness virus (AHSV) reverse genetics, different plasmid-based reverse genetics systems were developed. Plasmids containing cDNAs corresponding to each of the full-length double-stranded RNA genome segments of AHSV-4 under control of a T7 RNA polymerase promoter were co-transfected in cells expressing T7 RNA polymerase, and infectious AHSV-4 was recovered. This reverse genetics system was improved by reducing the required plasmids from 10 to five and resulted in enhanced virus recovery. Subsequently, a T7 RNA polymerase expression cassette was incorporated into one of the AHSV-4 rescue plasmids. This modified 5-plasmid set enabled virus recovery in BSR or L929 cells, thus offering the possibility to generate AHSV-4 in any cell line. Moreover, mutant and cross-serotype reassortant viruses were recovered. These plasmid DNA-based reverse genetics systems thus offer new possibilities for investigating AHSV biology and development of designer AHSV vaccine strains.


Subject(s)
African Horse Sickness Virus/genetics , Genome, Viral , Plasmids/genetics , Reverse Genetics , Animals , Cell Line , Cricetinae , DNA, Complementary , Gene Expression , Gene Order , RNA, Viral , Transfection
13.
Infect Genet Evol ; 38: 1-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26658066

ABSTRACT

Rotaviruses (RVs) are classified into eight species/groups (RVA-RVH) according to the migration patterns of their 11 genome segments, as well as by serological and molecular properties of Viral Protein 6 (VP6). In 1997 a new unclassified RV was reported infecting adults in Bangladesh and China. This virus was initially named novel adult diarrhoea rotavirus (ADRV-N), but later renamed as RVH. Since then, RVH has been detected in humans only very sporadically. However, RVH is increasingly being detected in pig populations in the USA, Brazil and Japan, but not yet in Africa. Unfortunately, whole genome sequence data of porcine RVH strains in GenBank is currently restricted to a single strain (SKA-1) from Japan. Porcine diarrhoeic samples were collected in South Africa and analysed for rotavirus using an RVA ELISA and electropherotyping by PAGE. One sample displayed a 4:2:1:1:1:1:1 migration pattern, typical for RVH. In order to further investigate this strain, sequence-independent amplification followed by random sequencing using the 454/Roche GS FLX Sequencer was performed, resulting in the second complete porcine RVH strain (MRC-DPRU1575) available in databases. Phylogenetically, all segments of MRC-DPRU1575 clustered closely with the SKA-1 strain and in some segments with known porcine RVH strains from Brazil and the USA. In contrast, the porcine RVH strains were only distantly related to human RVH strains from Asia and a partial RVH-like strain recently detected in bats from Cameroon. Overall, strain MRC-DPRU1575 is the first complete genome of a porcine RVH from Africa and allows for the development of improved RVH screening methods. Our analyses indicate that RVH strains cluster according to their host species, not suggesting any evidence of recent interspecies transmission events. However, more RVH genomes from a wider host range are needed to better understand their evolutionary pathways and zoonotic potential.


Subject(s)
Genome, Viral , Genomics , Rotavirus Infections/veterinary , Rotavirus/classification , Rotavirus/genetics , Swine Diseases/virology , Animals , Genes, Viral , Phylogeny , RNA, Viral , Sequence Analysis, DNA , South Africa/epidemiology , Swine , Swine Diseases/epidemiology , Swine Diseases/transmission
14.
J Virol ; 89(17): 8764-72, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26063433

ABSTRACT

UNLABELLED: African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. There are nine serotypes of AHSV showing different levels of cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African horse sickness (AHS) in equids, with a mortality rate of up to 95% in naive horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates appear to be competent vectors for the related bluetongue virus (BTV). To control AHS, live-attenuated vaccines (LAVs) are used in Africa. We used reverse genetics to generate "synthetic" reassortants of AHSV for all nine serotypes by exchange of genome segment 2 (Seg-2). This segment encodes VP2, which is the serotype-determining protein and the dominant target for neutralizing antibodies. Single Seg-2 AHSV reassortants showed similar cytopathogenic effects in mammalian cells but displayed different growth kinetics. Reverse genetics for AHSV was also used to study Seg-10 expressing NS3/NS3a proteins. We demonstrated that NS3/NS3a proteins are not essential for AHSV replication in vitro. NS3/NS3a of AHSV is, however, involved in the cytopathogenic effect in mammalian cells and is very important for virus release from cultured insect cells in particular. Similar to the concept of the bluetongue disabled infectious single animal (BT DISA) vaccine platform, an AHS DISA vaccine platform lacking NS3/NS3a expression was developed. Using exchange of genome segment 2 encoding VP2 protein (Seg-2[VP2]), we will be able to develop AHS DISA vaccine candidates for all current AHSV serotypes. IMPORTANCE: African horse sickness virus is transmitted by species of Culicoides biting midges and causes African horse sickness in equids, with a mortality rate of up to 95% in naive horses. African horse sickness has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates are supposed to be competent vectors. By using reverse genetics, viruses of all nine serotypes were constructed by the exchange of Seg-2 expressing the serotype-determining VP2 protein. Furthermore, we demonstrated that the nonstructural protein NS3/NS3a is not essential for virus replication in vitro. However, the potential spread of the virus by biting midges is supposed to be blocked, since the in vitro release of the virus was strongly reduced due to this deletion. VP2 exchange and NS3/NS3a deletion in African horse sickness virus were combined in the concept of a disabled infectious single animal vaccine for all nine serotypes.


Subject(s)
African Horse Sickness Virus/immunology , African Horse Sickness/immunology , Capsid Proteins/immunology , Horses/virology , Viral Nonstructural Proteins/genetics , African Horse Sickness/prevention & control , African Horse Sickness/virology , African Horse Sickness Virus/genetics , African Horse Sickness Virus/metabolism , Animals , Antibodies, Neutralizing/immunology , Capsid Proteins/genetics , Cell Line , Ceratopogonidae/virology , Cricetinae , Genome, Viral/genetics , Horses/immunology , Mutation/genetics , Vaccines, Attenuated/immunology , Vaccines, Subunit/immunology , Viral Vaccines/immunology , Virus Replication/genetics
15.
PLoS One ; 10(4): e0124281, 2015.
Article in English | MEDLINE | ID: mdl-25915516

ABSTRACT

African horse sickness is a serious equid disease caused by the orbivirus African horse sickness virus (AHSV). The virus has ten double-stranded RNA genome segments encoding seven structural and three non-structural proteins. Recently, an additional protein was predicted to be encoded by genome segment 9 (Seg-9), which also encodes VP6, of most orbiviruses. This has since been confirmed in bluetongue virus and Great Island virus, and the non-structural protein was named NS4. In this study, in silico analysis of AHSV Seg-9 sequences revealed the existence of two main types of AHSV NS4, designated NS4-I and NS4-II, with different lengths and amino acid sequences. The AHSV NS4 coding sequences were in the +1 reading frame relative to that of VP6. Both types of AHSV NS4 were expressed in cultured mammalian cells, with sizes close to the predicted 17-20 kDa. Fluorescence microscopy of these cells revealed a dual cytoplasmic and nuclear, but not nucleolar, distribution that was very similar for NS4-I and NS4-II. Immunohistochemistry on heart, spleen, and lung tissues from AHSV-infected horses showed that NS4 occurs in microvascular endothelial cells and mononuclear phagocytes in all of these tissues, localising to the both the cytoplasm and the nucleus. Interestingly, NS4 was also detected in stellate-shaped dendritic macrophage-like cells with long cytoplasmic processes in the red pulp of the spleen. Finally, nucleic acid protection assays using bacterially expressed recombinant AHSV NS4 showed that both types of AHSV NS4 bind dsDNA, but not dsRNA. Further studies will be required to determine the exact function of AHSV NS4 during viral replication.


Subject(s)
African Horse Sickness Virus/genetics , African Horse Sickness Virus/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , African Horse Sickness/pathology , African Horse Sickness/virology , African Horse Sickness Virus/classification , Animals , Cell Line , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Viral , Genome, Viral , Genotype , Horses , Intracellular Space/metabolism , Open Reading Frames , Phylogeny , Protein Transport , Sequence Analysis, DNA , Serogroup
16.
Mol Biol Evol ; 32(8): 2060-71, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25858434

ABSTRACT

The majority of human group A rotaviruses possess the P[8] VP4 genotype. Recently, a genetically distinct subtype of the P[8] genotype, also known as OP354-like P[8] or lineage P[8]-4, emerged in several countries. However, it is unclear for how long the OP354-like P[8] gene has been circulating in humans and how it has spread. In a global collaborative effort 98 (near-)complete OP354-like P[8] VP4 sequences were obtained and used for phylogeographic analysis to determine the viral migration patterns. During the sampling period, 1988-2012, we found that South and East Asia acted as a source from which strains with the OP354-like P[8] gene were seeded to Africa, Europe, and North America. The time to the most recent common ancestor (TMRCA) of all OP354-like P[8] genes was estimated at 1987. However, most OP354-like P[8] strains were found in three main clusters with TMRCAs estimated between 1996 and 2001. The VP7 gene segment of OP354-like P[8] strains showed evidence of frequent reassortment, even in localized epidemics, suggesting that OP354-like P[8] genes behave in a similar manner on the evolutionary level as other P[8] subtypes. The results of this study suggest that OP354-like P[8] strains have been able to disperse globally in a relatively short time period. This, in combination with a relatively large genetic distance to other P[8] subtypes, might result in a lower vaccine effectiveness, underscoring the need for a continued surveillance of OP354-like P[8] strains, especially in countries where rotavirus vaccination programs are in place.


Subject(s)
Genes, Viral , Genotype , Rotavirus Infections , Rotavirus , Asia , Humans , Phylogeography , Rotavirus/genetics , Rotavirus/pathogenicity , Rotavirus Infections/epidemiology , Rotavirus Infections/genetics , Rotavirus Infections/transmission
17.
J Gen Virol ; 95(Pt 10): 2233-2239, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24584476

ABSTRACT

The full-length genome sequence of a porcine picobirnavirus (PBV) detected in Italy in 2004 was determined. The smaller (S) genome segment was 1730 nt, coding for a putative RNA-dependent RNA polymerase. Two distinct subpopulations of larger (L) genome segment (LA and LB) were identified in the sample, with the sizes ranging from 2351 to 2666 nt. The ORF1, coding for a protein of unknown function, contained a variable number of repetitions of the ExxRxNxxxE motif. The capsid protein-coding ORF2 spanned nt 810-2447 in the LB variants and started at nt 734 in the LA variants. However, a termination codon was present only in one of all the LA segment variants. Three-dimensional modelling of the porcine PBV capsids suggested structural differences in the protruding domain, tentatively involved as antigens in the humoral immune response. Altogether, these findings suggest the simultaneous presence of two different PBV strains sharing the same S segment but displaying genetically diverse L segments. In addition, the sample probably contained a mixture of PBVs with aberrant RNA replication products. Altered structure in the L segments could be tolerated and retained in the presence of functionally integer-cognate genes and represents a mechanism of virus diversification.


Subject(s)
Antigenic Variation , Genetic Variation , Genome, Viral , Picobirnavirus/genetics , Picobirnavirus/immunology , RNA Virus Infections/veterinary , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Cluster Analysis , Italy , Models, Molecular , Molecular Sequence Data , Phylogeny , Picobirnavirus/classification , Picobirnavirus/isolation & purification , Protein Conformation , RNA Virus Infections/virology , RNA, Viral/genetics , Sequence Analysis, DNA , Swine , Viral Proteins/chemistry , Viral Proteins/genetics
18.
Virol J ; 10: 220, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23816333

ABSTRACT

BACKGROUND: Botrytis cinerea CCg378 is a wild-type strain infected with two types of double-stranded RNA (dsRNA) mycoviruses and which presents hypovirulence-associated traits. The objectives of the present study were to characterize the mycoviruses and investigate their relationship with the low virulence degree of the fungal host. RESULTS: B. cinerea CCg378 contains five dsRNA molecules that are associated with two different types of isometric viral particles of 32 and 23 nm in diameter, formed by structural polypeptides of 70-kDa and 48-kDa, respectively. The transfection of spheroplasts of a virus-free strain, B. cinerea CKg54, with viral particles purified from the CCg378 strain revealed that the 2.2-kbp dsRNAs have no dependency on the smaller molecules for its stable maintenance in the fungal cytoplasm, because a fungal clone that only contains the 2.2-kbp dsRNAs associated with the 32-nm particles was obtained, which we named B. cinerea CKg54vi378. One of the 2.2 kbpdsRNA segments (2219 bp) was sequenced and corresponds to the gene encoding the capsid protein of B. cinerea CCg378 virus 1 (Bc378V1), a putative new member of the Partitiviridae family. Furthermore, physiological parameters related to the degree of virulence of the fungus, such as the sporulation rate and laccase activity, were lower in B. cinerea CCg378 and B. cinerea CKg54vi378 than in B. cinerea CKg54. Additionally, bioassays performed on grapevine leaves showed that the CCg378 and CKg54vi378 strains presented a lower degree of invasiveness on the plant tissue than the CKg54 strain. CONCLUSIONS: The results show that B. cinerea CCg378 is coinfected by two mycoviruses and that the 2.2-kbp dsRNAs correspond to the 32-nm mycovirus genome, which would be a new member of the Partitiviridae family as it has the typical pattern of partitiviruses. On the other hand, the results suggest that the hypovirulence of B. cinerea CCg378 could be conferred by both mycoviruses, since the fungal clone B. cinerea CKg54vi378 presents an intermediate virulence between the CKg54 and CCg378 strains. Therefore, the putative partitivirus would be partially contributing to the hypovirulence phenotype of the CCg378 strain.


Subject(s)
Botrytis/growth & development , Botrytis/virology , RNA Viruses/classification , RNA Viruses/genetics , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Botrytis/pathogenicity , Molecular Sequence Data , Molecular Weight , Plant Diseases/microbiology , Plant Leaves/microbiology , RNA Viruses/isolation & purification , RNA, Viral/isolation & purification , Sequence Analysis, DNA , Viral Structural Proteins/chemistry , Virion/ultrastructure , Virulence , Vitis/microbiology
19.
J Virol ; 86(15): 7858-66, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22593166

ABSTRACT

African horsesickness (AHS) is a devastating disease of horses. The disease is caused by the double-stranded RNA-containing African horsesickness virus (AHSV). Using electron cryomicroscopy and three-dimensional image reconstruction, we determined the architecture of an AHSV serotype 4 (AHSV-4) reference strain. The structure revealed triple-layered AHS virions enclosing the segmented genome and transcriptase complex. The innermost protein layer contains 120 copies of VP3, with the viral polymerase, capping enzyme, and helicase attached to the inner surface of the VP3 layer on the 5-fold axis, surrounded by double-stranded RNA. VP7 trimers form a second, T=13 layer on top of VP3. Comparative analyses of the structures of bluetongue virus and AHSV-4 confirmed that VP5 trimers form globular domains and VP2 trimers form triskelions, on the virion surface. We also identified an AHSV-7 strain with a truncated VP2 protein (AHSV-7 tVP2) which outgrows AHSV-4 in culture. Comparison of AHSV-7 tVP2 to bluetongue virus and AHSV-4 allowed mapping of two domains in AHSV-4 VP2, and one in bluetongue virus VP2, that are important in infection. We also revealed a protein plugging the 5-fold vertices in AHSV-4. These results shed light on virus-host interactions in an economically important orbivirus to help the informed design of new vaccines.


Subject(s)
African Horse Sickness Virus/ultrastructure , Models, Molecular , Virion/ultrastructure , African Horse Sickness/metabolism , African Horse Sickness Virus/metabolism , Animals , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Chlorocebus aethiops , Horses/virology , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Structure-Activity Relationship , Vero Cells , Viral Core Proteins/chemistry , Viral Core Proteins/metabolism , Virion/metabolism
20.
PLoS One ; 7(2): e30540, 2012.
Article in English | MEDLINE | ID: mdl-22363444

ABSTRACT

Since 1998, Bluetongue virus (BTV)-serotypes 1, 2, 4, 9, and 16 have invaded European countries around the Mediterranean Basin. In 2006, a huge BT-outbreak started after incursion of BTV-serotype 8 (BTV8) in North-Western Europe. More recently, BTV6 and BTV11 were reported in North-Western Europe in 2008. These latter strains are closely related to live-attenuated vaccine, whereas BTV8 is virulent and can induce severe disease in ruminants, including cattle. In addition, Toggenburg orbivirus (TOV) was detected in 2008 in Swiss goats, which was recognized as a new serotype of BTV (BTV25). The (re-)emergency of known and unknown BTV-serotypes needs a rapid response to supply effective vaccines, and research to study this phenomenon. Recently, orbivirus research achieved an important breakthrough by the establishment of reverse genetics for BTV1. Here, reverse genetics for two recent BTV strains representing virulent BTV8 and avirulent BTV6 was developed. For this purpose, extensive sequencing of full-genomes was performed, resulting in the consensus sequences of BTV8/net07 and BTV6/net08. The recovery of 'synthetic BTV', respectively rgBTV8 and rgBTV6, completely from T7-derived RNA transcripts was confirmed by silent mutations by which these 'synthetic BTVs' could be genetically distinguished from wild type BTV, respectively wtBTV6 and wtBTV8. The in vitro and in vivo properties of rgBTV6 or rgBTV8 were comparable to the properties of their parent strains. The asymptomatic or avirulent properties of rgBTV6 and the virulence of rgBTV8 were confirmed by experimental infection of sheep. Reverse genetics of the vaccine-related BTV6 provides a perfect start to develop new generations of BT-vaccines. Reverse genetics of the virulent BTV8 will accelerate research on the special features of BTV8, like transmission by species of Culicoides in a moderate climate, transplacental transmission, and pathogenesis in cattle.


Subject(s)
Bluetongue virus/genetics , Bluetongue virus/pathogenicity , Reverse Genetics/methods , Animals , Base Sequence , Bluetongue/virology , Bluetongue virus/growth & development , Cattle , Cell Line , Genetic Markers , Genome, Viral/genetics , Molecular Sequence Data , Mutation/genetics , Sheep/virology , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...