Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Nat Cell Biol ; 26(5): 770-783, 2024 May.
Article in English | MEDLINE | ID: mdl-38600236

ABSTRACT

DNA-protein crosslinks (DPCs) arise from enzymatic intermediates, metabolism or chemicals like chemotherapeutics. DPCs are highly cytotoxic as they impede DNA-based processes such as replication, which is counteracted through proteolysis-mediated DPC removal by spartan (SPRTN) or the proteasome. However, whether DPCs affect transcription and how transcription-blocking DPCs are repaired remains largely unknown. Here we show that DPCs severely impede RNA polymerase II-mediated transcription and are preferentially repaired in active genes by transcription-coupled DPC (TC-DPC) repair. TC-DPC repair is initiated by recruiting the transcription-coupled nucleotide excision repair (TC-NER) factors CSB and CSA to DPC-stalled RNA polymerase II. CSA and CSB are indispensable for TC-DPC repair; however, the downstream TC-NER factors UVSSA and XPA are not, a result indicative of a non-canonical TC-NER mechanism. TC-DPC repair functions independently of SPRTN but is mediated by the ubiquitin ligase CRL4CSA and the proteasome. Thus, DPCs in genes are preferentially repaired in a transcription-coupled manner to facilitate unperturbed transcription.


Subject(s)
DNA Helicases , DNA Repair Enzymes , DNA Repair , Poly-ADP-Ribose Binding Proteins , Proteolysis , RNA Polymerase II , Transcription, Genetic , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA/metabolism , DNA/genetics , HEK293 Cells , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Damage , Proteasome Endopeptidase Complex/metabolism , Carrier Proteins , Receptors, Interleukin-17
3.
EMBO Mol Med ; 15(11): e17973, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37800682

ABSTRACT

The brittle hair syndrome Trichothiodystrophy (TTD) is characterized by variable clinical features, including photosensitivity, ichthyosis, growth retardation, microcephaly, intellectual disability, hypogonadism, and anaemia. TTD-associated mutations typically cause unstable mutant proteins involved in various steps of gene expression, severely reducing steady-state mutant protein levels. However, to date, no such link to instability of gene-expression factors for TTD-associated mutations in MPLKIP/TTDN1 has been established. Here, we present seven additional TTD individuals with MPLKIP mutations from five consanguineous families, with a newly identified MPLKIP variant in one family. By mass spectrometry-based interaction proteomics, we demonstrate that MPLKIP interacts with core splicing factors and the lariat debranching protein DBR1. MPLKIP-deficient primary fibroblasts have reduced steady-state DBR1 protein levels. Using Human Skin Equivalents (HSEs), we observed impaired keratinocyte differentiation associated with compromised splicing and eventually, an imbalanced proteome affecting skin development and, interestingly, also the immune system. Our data show that MPLKIP, through its DBR1 stabilizing role, is implicated in mRNA splicing, which is of particular importance in highly differentiated tissue.


Subject(s)
Trichothiodystrophy Syndromes , Humans , Adaptor Proteins, Signal Transducing/metabolism , Consanguinity , Mutation , Phenotype , RNA Splicing , Trichothiodystrophy Syndromes/genetics , Trichothiodystrophy Syndromes/metabolism
4.
Aging Cell ; 22(3): e13768, 2023 03.
Article in English | MEDLINE | ID: mdl-36756698

ABSTRACT

Heart failure has reached epidemic proportions in a progressively ageing population. The molecular mechanisms underlying heart failure remain elusive, but evidence indicates that DNA damage is enhanced in failing hearts. Here, we tested the hypothesis that endogenous DNA repair in cardiomyocytes is critical for maintaining normal cardiac function, so that perturbed repair of spontaneous DNA damage drives early onset of heart failure. To increase the burden of spontaneous DNA damage, we knocked out the DNA repair endonucleases xeroderma pigmentosum complementation group G (XPG) and excision repair cross-complementation group 1 (ERCC1), either systemically or cardiomyocyte-restricted, and studied the effects on cardiac function and structure. Loss of DNA repair permitted normal heart development but subsequently caused progressive deterioration of cardiac function, resulting in overt congestive heart failure and premature death within 6 months. Cardiac biopsies revealed increased oxidative stress associated with increased fibrosis and apoptosis. Moreover, gene set enrichment analysis showed enrichment of pathways associated with impaired DNA repair and apoptosis, and identified TP53 as one of the top active upstream transcription regulators. In support of the observed cardiac phenotype in mutant mice, several genetic variants in the ERCC1 and XPG gene in human GWAS data were found to be associated with cardiac remodelling and dysfunction. In conclusion, unrepaired spontaneous DNA damage in differentiated cardiomyocytes drives early onset of cardiac failure. These observations implicate DNA damage as a potential novel therapeutic target and highlight systemic and cardiomyocyte-restricted DNA repair-deficient mouse mutants as bona fide models of heart failure.


Subject(s)
DNA-Binding Proteins , Heart Failure , Mice , Animals , Humans , DNA-Binding Proteins/metabolism , Myocytes, Cardiac/metabolism , DNA Repair/genetics , DNA Damage/genetics , Heart Failure/genetics , Endonucleases
5.
Nat Genet ; 55(2): 268-279, 2023 02.
Article in English | MEDLINE | ID: mdl-36658433

ABSTRACT

Gene expression profiling has identified numerous processes altered in aging, but how these changes arise is largely unknown. Here we combined nascent RNA sequencing and RNA polymerase II chromatin immunoprecipitation followed by sequencing to elucidate the underlying mechanisms triggering gene expression changes in wild-type aged mice. We found that in 2-year-old liver, 40% of elongating RNA polymerases are stalled, lowering productive transcription and skewing transcriptional output in a gene-length-dependent fashion. We demonstrate that this transcriptional stress is caused by endogenous DNA damage and explains the majority of gene expression changes in aging in most mainly postmitotic organs, specifically affecting aging hallmark pathways such as nutrient sensing, autophagy, proteostasis, energy metabolism, immune function and cellular stress resilience. Age-related transcriptional stress is evolutionary conserved from nematodes to humans. Thus, accumulation of stochastic endogenous DNA damage during aging deteriorates basal transcription, which establishes the age-related transcriptome and causes dysfunction of key aging hallmark pathways, disclosing how DNA damage functionally underlies major aspects of normal aging.


Subject(s)
DNA-Directed RNA Polymerases , Transcriptome , Humans , Mice , Animals , Child, Preschool , Transcriptome/genetics , DNA-Directed RNA Polymerases/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Genome , Aging/genetics
6.
Aging Cell ; 21(4): e13562, 2022 04.
Article in English | MEDLINE | ID: mdl-35246937

ABSTRACT

Organs age differently, causing wide heterogeneity in multimorbidity, but underlying mechanisms are largely elusive. To investigate the basis of organ-specific ageing, we utilized progeroid repair-deficient Ercc1Δ/- mouse mutants and systematically compared at the tissue, stem cell and organoid level two organs representing ageing extremes. Ercc1Δ/- intestine shows hardly any accelerated ageing. Nevertheless, we found apoptosis and reduced numbers of intestinal stem cells (ISCs), but cell loss appears compensated by over-proliferation. ISCs retain their organoid-forming capacity, but organoids perform poorly in culture, compared with WT. Conversely, liver ages dramatically, even causing early death in Ercc1-KO mice. Apoptosis, p21, polyploidization and proliferation of various (stem) cells were prominently elevated in Ercc1Δ/- liver and stem cell populations were either largely unaffected (Sox9+), or expanding (Lgr5+), but were functionally exhausted in organoid formation and development in vitro. Paradoxically, while intestine displays less ageing, repair in WT ISCs appears inferior to liver as shown by enhanced sensitivity to various DNA-damaging agents, and lower lesion removal. Our findings reveal organ-specific anti-ageing strategies. Intestine, with short lifespan limiting time for damage accumulation and repair, favours apoptosis of damaged cells relying on ISC plasticity. Liver with low renewal rates depends more on repair pathways specifically protecting the transcribed compartment of the genome to promote sustained functionality and cell preservation. As shown before, the hematopoietic system with intermediate self-renewal mainly invokes replication-linked mechanisms, apoptosis and senescence. Hence, organs employ different genome maintenance strategies, explaining heterogeneity in organ ageing and the segmental nature of DNA-repair-deficient progerias.


Subject(s)
Aging , DNA Damage , Aging/genetics , Aging/metabolism , Animals , DNA Damage/genetics , DNA Repair , Mice , Organoids/metabolism , Stem Cells/metabolism
7.
Clin Cancer Res ; 27(23): 6602-6612, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34580113

ABSTRACT

PURPOSE: We investigated whether organoids can be generated from resected tumors of patients who received eight cycles of neoadjuvant FOLFIRINOX chemotherapy before surgery, and evaluated the sensitivity/resistance of these surviving cancer cells to cancer therapy. EXPERIMENTAL DESIGN: We generated a library of 10 pancreatic ductal adenocarcinoma (PDAC) organoid lines: five each from treatment-naïve and FOLFIRINOX-treated patients. We first assessed the histologic, genetic, and transcriptional characteristics of the organoids and their matched primary PDAC tissue. Next, the organoids' response to treatment with single agents-5-FU, irinotecan, and oxaliplatin-of the FOLFIRINOX regimen as well as combined regimen was evaluated. Finally, global mRNA-seq analyses were performed to identify FOLFIRINOX resistance pathways. RESULTS: All 10 patient-derived PDAC organoids recapitulate histologic, genetic, and transcriptional characteristics of their primary tumor tissue. Neoadjuvant FOLFIRINOX-treated organoids display resistance to FOLFIRINOX (5/5), irinotecan (5/5), and oxaliplatin (4/5) when compared with treatment-naïve organoids (FOLFIRINOX: 1/5, irinotecan: 2/5, oxaliplatin: 0/5). 5-Fluorouracil treatment responses between naïve and treated organoids were similar. Comparative global transcriptome analysis of treatment-naïve and FOLFIRINOX samples-in both organoids and corresponding matched tumor tissues-uncovered modulated pathways mainly involved in genomic instability, energy metabolism, and innate immune system. CONCLUSIONS: Resistance development in neoadjuvant FOLFIRINOX organoids, recapitulating their primary tumor resistance, suggests continuation of FOLFIRINOX therapy as an adjuvant treatment may not be advantageous for these patients. Gene-expression profiles of PDAC organoids identify targetable pathways involved in chemoresistance development upon neoadjuvant FOLFIRINOX treatment, thus opening up combination therapy possibilities.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Fluorouracil , Humans , Irinotecan/pharmacology , Irinotecan/therapeutic use , Leucovorin , Neoadjuvant Therapy , Organoids/pathology , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Retrospective Studies
8.
Nature ; 592(7856): 695-703, 2021 04.
Article in English | MEDLINE | ID: mdl-33911272

ABSTRACT

Ageing is a complex, multifaceted process leading to widespread functional decline that affects every organ and tissue, but it remains unknown whether ageing has a unifying causal mechanism or is grounded in multiple sources. Phenotypically, the ageing process is associated with a wide variety of features at the molecular, cellular and physiological level-for example, genomic and epigenomic alterations, loss of proteostasis, declining overall cellular and subcellular function and deregulation of signalling systems. However, the relative importance, mechanistic interrelationships and hierarchical order of these features of ageing have not been clarified. Here we synthesize accumulating evidence that DNA damage affects most, if not all, aspects of the ageing phenotype, making it a potentially unifying cause of ageing. Targeting DNA damage and its mechanistic links with the ageing phenotype will provide a logical rationale for developing unified interventions to counteract age-related dysfunction and disease.


Subject(s)
Aging/genetics , DNA Damage , Animals , Cell Differentiation , Cell Lineage , DNA Repair , Humans
9.
Cancers (Basel) ; 11(6)2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31212861

ABSTRACT

Uveal melanoma (UM) is the most frequently found primary intra-ocular tumor in adults. It is a highly aggressive cancer that causes metastasis-related mortality in up to half of the patients. Many independent studies have reported somatic genetic changes associated with high metastatic risk, such as monosomy of chromosome 3 and mutations in BAP1. Still, the mechanisms that drive metastatic spread are largely unknown. This study aimed to elucidate the potential role of microRNAs in the metastasis of UM. Using a next-generation sequencing approach in 26 UM samples we identified thirteen differentially expressed microRNAs between high-risk UM and low/intermediate-risk UM, including the known oncomirs microRNA-17-5p, microRNA-21-5p, and miR-151a-3p. Integration of the differentially expressed microRNAs with expression data of predicted target genes revealed 106 genes likely to be affected by aberrant microRNA expression. These genes were involved in pathways such as cell cycle regulation, EGF signaling and EIF2 signaling. Our findings demonstrate that aberrant microRNA expression in UM may affect the expression of genes in a variety of cancer-related pathways. This implies that some microRNAs can be responsible for UM metastasis and are promising potential targets for future treatment.

10.
Genome Res ; 29(7): 1067-1077, 2019 07.
Article in English | MEDLINE | ID: mdl-31221724

ABSTRACT

Nucleotide excision repair (NER) is one of the main DNA repair pathways that protect cells against genomic damage. Disruption of this pathway can contribute to the development of cancer and accelerate aging. Mutational characteristics of NER-deficiency may reveal important diagnostic opportunities, as tumors deficient in NER are more sensitive to certain treatments. Here, we analyzed the genome-wide somatic mutational profiles of adult stem cells (ASCs) from NER-deficient Ercc1 -/Δ mice. Our results indicate that NER-deficiency increases the base substitution load twofold in liver but not in small intestinal ASCs, which coincides with the tissue-specific aging pathology observed in these mice. Moreover, NER-deficient ASCs of both tissues show an increased contribution of Signature 8 mutations, which is a mutational pattern with unknown etiology that is recurrently observed in various cancer types. The scattered genomic distribution of the base substitutions indicates that deficiency of global-genome NER (GG-NER) underlies the observed mutational consequences. In line with this, we observe increased Signature 8 mutations in a GG-NER-deficient human organoid culture, in which XPC was deleted using CRISPR-Cas9 gene-editing. Furthermore, genomes of NER-deficient breast tumors show an increased contribution of Signature 8 mutations compared with NER-proficient tumors. Elevated levels of Signature 8 mutations could therefore contribute to a predictor of NER-deficiency based on a patient's mutational profile.


Subject(s)
DNA Repair/genetics , Mutation , Neoplasms/genetics , Adult Stem Cells , Animals , Breast Neoplasms/genetics , Cohort Studies , DNA Mutational Analysis , DNA, Neoplasm , DNA-Binding Proteins/genetics , Endonucleases/genetics , Female , Humans , Mice , Organoids , Tissue Culture Techniques , Whole Genome Sequencing
11.
Proc Natl Acad Sci U S A ; 115(19): E4368-E4376, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29632207

ABSTRACT

Initiation and promoter-proximal pausing are key regulatory steps of RNA Polymerase II (Pol II) transcription. To study the in vivo dynamics of endogenous Pol II during these steps, we generated fully functional GFP-RPB1 knockin cells. GFP-RPB1 photobleaching combined with computational modeling revealed four kinetically distinct Pol II fractions and showed that on average 7% of Pol II are freely diffusing, while 10% are chromatin-bound for 2.4 seconds during initiation, and 23% are promoter-paused for only 42 seconds. This unexpectedly high turnover of Pol II at promoters is most likely caused by premature termination of initiating and promoter-paused Pol II and is in sharp contrast to the 23 minutes that elongating Pol II resides on chromatin. Our live-cell-imaging approach provides insights into Pol II dynamics and suggests that the continuous release and reinitiation of promoter-bound Pol II is an important component of transcriptional regulation.


Subject(s)
Promoter Regions, Genetic/physiology , RNA Polymerase II/metabolism , Transcription, Genetic/physiology , Cell Line, Transformed , Gene Knock-In Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , RNA Polymerase II/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
12.
Cell ; 169(1): 132-147.e16, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340339

ABSTRACT

The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging XpdTTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored.


Subject(s)
Aging/pathology , Antibiotics, Antineoplastic/adverse effects , Cell-Penetrating Peptides/pharmacology , Doxorubicin/adverse effects , Aging/drug effects , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Apoptosis , Cell Cycle Proteins , Cell Line , Cell Survival , Cellular Senescence/drug effects , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Female , Fibroblasts/cytology , Forkhead Transcription Factors/chemistry , Forkhead Transcription Factors/metabolism , Humans , Inclusion Bodies/drug effects , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Kidney/drug effects , Kidney/physiology , Liver/drug effects , Liver/physiology , Male , Mice , Trichothiodystrophy Syndromes/drug therapy , Tumor Suppressor Protein p53/metabolism
13.
Annu Rev Pharmacol Toxicol ; 56: 427-45, 2016.
Article in English | MEDLINE | ID: mdl-26514200

ABSTRACT

Human syndromes and mouse mutants that exhibit accelerated but bona fide aging in multiple organs and tissues have been invaluable for the identification of nine denominators of aging: telomere attrition, genome instability, epigenetic alterations, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular communication, loss of proteostasis, cellular senescence and adult stem cell exhaustion. However, whether and how these instigators of aging interrelate or whether they have one root cause is currently largely unknown. Rare human progeroid syndromes and corresponding mouse mutants with resolved genetic defects highlight the dominant importance of genome maintenance for aging. A second class of aging-related disorders reveals a cross connection with metabolism. As genome maintenance and metabolism are closely interconnected, they may constitute the main underlying biology of aging. This review focuses on the role of genome stability in aging, its crosstalk with metabolism, and options for nutritional and/or pharmaceutical interventions that delay age-related pathology.


Subject(s)
Aging/genetics , Genomic Instability/genetics , Animals , Disease Models, Animal , Humans , Mice , Syndrome
14.
Mol Cancer ; 14: 196, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26576679

ABSTRACT

BACKGROUND: Drug resistance hampers the efficient treatment of malignancies, including advanced stage ovarian cancer, which has a 5-year survival rate of only 30 %. The molecular processes underlying resistance have been extensively studied, however, not much is known about the involvement of microRNAs. METHODS: Differentially expressed microRNAs between cisplatin sensitive and resistant cancer cell line pairs were determined using microarrays. Mimics were used to study the role of microRNAs in drug sensitivity of ovarian cancer cell lines and patient derived tumor cells. Luciferase reporter constructs were used to establish regulation of target genes by microRNAs. RESULTS: MiR-634 downregulation was associated with cisplatin resistance. Overexpression of miR-634 affected cell cycle progression and enhanced apoptosis in ovarian cancer cells. miR-634 resensitized resistant ovarian cancer cell lines and patient derived drug resistant tumor cells to cisplatin. Similarly, miR-634 enhanced the response to carboplatin and doxorubicin, but not to paclitaxel. The cell cycle regulator CCND1, and Ras-MAPK pathway components GRB2, ERK2 and RSK2 were directly repressed by miR-634 overexpression. Repression of the Ras-MAPK pathway using a MEK inhibitor phenocopied the miR-634 effects on viability and chemosensitivity. CONCLUSION: miR-634 levels determine chemosensitivity in ovarian cancer cells. We identify miR-634 as a therapeutic candidate to resensitize chemotherapy resistant ovarian tumors.


Subject(s)
MicroRNAs/physiology , Ovarian Neoplasms/genetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , Paclitaxel/pharmacology
15.
Genom Data ; 5: 381-4, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26484291

ABSTRACT

Standard RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species. For example, small and large RNAs from the same sample cannot be sequenced in a single sequence run. We designed RNAome sequencing, which is a strand-specific method to determine the expression of small and large RNAs from ribosomal RNA-depleted total RNA in a single sequence run. RNAome sequencing quantitatively preserves all RNA classes. This characteristic allows comparisons between RNA classes, thereby facilitating relationships between different RNA classes. Here, we describe in detail the experimental procedure associated with RNAome sequencing published by Derks and colleagues in RNA Biology (2015) [1]. We also provide the R code for the developed Total Rna Analysis Pipeline (TRAP), an algorithm to analyze RNAome sequencing datasets (deposited at the Gene Expression Omnibus data repository, accession number GSE48084).

16.
PLoS One ; 10(4): e0126029, 2015.
Article in English | MEDLINE | ID: mdl-25927440

ABSTRACT

Bladder cancer has a high incidence with significant morbidity and mortality. Attenuated expression of the DNA damage response protein Xeroderma Pigmentosum complementation group C (XPC) has been described in bladder cancer. XPC plays an essential role as the main initiator and damage-detector in global genome nucleotide excision repair (NER) of UV-induced lesions, bulky DNA adducts and intrastrand crosslinks, such as those made by the chemotherapeutic agent Cisplatin. Hence, XPC protein might be an informative biomarker to guide personalized therapy strategies in a subset of bladder cancer cases. Therefore, we measured the XPC protein expression level and functional NER activity of 36 bladder tumors in a standardized manner. We optimized conditions for dissociation and in vitro culture of primary bladder cancer cells and confirmed attenuated XPC expression in approximately 40% of the tumors. However, NER activity was similar to co-cultured wild type cells in all but one of 36 bladder tumors. We conclude, that (i) functional NER deficiency is a relatively rare phenomenon in bladder cancer and (ii) XPC protein levels are not useful as biomarker for NER activity in these tumors.


Subject(s)
DNA Repair , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Urinary Bladder Neoplasms/genetics , Urinary Bladder/pathology , Xeroderma Pigmentosum/genetics , DNA/genetics , DNA-Binding Proteins/analysis , Humans , Tumor Cells, Cultured , Urinary Bladder/metabolism , Urinary Bladder Neoplasms/pathology , Xeroderma Pigmentosum/pathology
17.
RNA Biol ; 12(1): 30-42, 2015.
Article in English | MEDLINE | ID: mdl-25826412

ABSTRACT

Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , RNA/metabolism , Sequence Analysis, RNA/methods , Transcriptome , Animals , Humans , Mice
18.
Curr Opin Genet Dev ; 26: 124-30, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25222498

ABSTRACT

Recent advances have identified accumulation of DNA damage as a major driver of aging. However, there are numerous kinds of DNA lesions each with their own characteristics and cellular outcome, which highly depends on cellular context: proliferation (cell cycle), differentiation, propensity for survival/death, cell condition and systemic hormonal and immunological parameters. In addition, DNA damage is strongly influenced by cellular metabolism, anti-oxidant status and exogenous factors, consistent with the multi-factorial nature of aging. Notably, DNA lesions interfering with replication have very different outcomes compared to transcription. These considerations provide a conceptual framework in which different types of DNA damage and their setting contribute to the aging process in differential manners.


Subject(s)
Aging/genetics , Cell Cycle/genetics , DNA Damage , DNA Replication/genetics , Aging/metabolism , Animals , Cell Proliferation/genetics , DNA/genetics , DNA/metabolism , DNA Repair/genetics , Disease/genetics , Humans
19.
DNA Repair (Amst) ; 19: 214-20, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24794401

ABSTRACT

The emergence of high density technologies monitoring the genome, transcriptome and proteome in relation to genotoxic stress have tremendously enhanced our knowledge on global responses and dynamics in the DNA damage response, including its relation with cancer and aging. Moreover, '-omics' technologies identified many novel factors, their post-translational modifications, pathways and global responses in the cellular response to DNA damage. Based on omics, it is currently estimated that thousands of gene(product)s participate in the DNA damage response, recognizing complex networks that determine cell fate after damage to the most precious cellular molecule, DNA. The development of next generation sequencing technology and associated specialized protocols can quantitatively monitor RNA and DNA at unprecedented single nucleotide resolution. In this review we will discuss the contribution of omics technologies and in particular next generation sequencing to our understanding of the DNA damage response and the future prospective of next generation sequencing, its single cell application and omics dataset integration in unraveling intricate DNA damage signaling networks.


Subject(s)
Aging/genetics , DNA Damage/genetics , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Aging/pathology , Genomics , Humans , Neoplasms/pathology , Proteomics , Signal Transduction/genetics
20.
Arch Toxicol ; 88(4): 1023-34, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24390151

ABSTRACT

There is a high need to improve the assessment of, especially non-genotoxic, carcinogenic features of chemicals. We therefore explored a toxicogenomics-based approach using genome-wide microRNA and mRNA expression profiles upon short-term exposure in mice. For this, wild-type mice were exposed for seven days to three different classes of chemicals, i.e., four genotoxic carcinogens (GTXC), seven non-genotoxic carcinogens (NGTXC), and five toxic non-carcinogens. Hepatic expression patterns of mRNA and microRNA transcripts were determined after exposure and used to assess the discriminative power of the in vivo transcriptome for GTXC and NGTXC. A final classifier set, discriminative for GTXC and NGTXC, was generated from the transcriptomic data using a tiered approach. This appeared to be a valid approach, since the predictive power of the final classifier set in three different classifier algorithms was very high for the original training set of chemicals. Subsequent validation in an additional set of chemicals revealed that the predictive power for GTXC remained high, in contrast to NGTXC, which appeared to be more troublesome. Our study demonstrated that the in vivo microRNA-ome has less discriminative power to correctly identify (non-)genotoxic carcinogen classes. The results generally indicate that single mRNA transcripts do have the potential to be applied in risk assessment, but that additional (genomic) strategies are necessary to correctly predict the non-genotoxic carcinogenic potential of a chemical.


Subject(s)
Carcinogens/toxicity , Gene Expression Profiling , Liver/drug effects , MicroRNAs/metabolism , Mutagens/toxicity , RNA, Messenger/metabolism , Toxicogenetics/methods , Algorithms , Animals , Carcinogens/classification , Discriminant Analysis , Gene Expression Regulation/drug effects , Genetic Markers , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mutagens/classification , Reproducibility of Results , Risk Assessment , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...