Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35027454

ABSTRACT

ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) AND ATXR6 are required for the deposition of H3K27me1 and for maintaining genomic stability in Arabidopsis Reduction of ATXR5/6 activity results in activation of DNA damage response genes, along with tissue-specific derepression of transposable elements (TEs), chromocenter decompaction, and genomic instability characterized by accumulation of excess DNA from heterochromatin. How loss of ATXR5/6 and H3K27me1 leads to these phenotypes remains unclear. Here we provide extensive characterization of the atxr5/6 hypomorphic mutant by comprehensively examining gene expression and epigenetic changes in the mutant. We found that the tissue-specific phenotypes of TE derepression and excessive DNA in this atxr5/6 mutant correlated with residual ATXR6 expression from the hypomorphic ATXR6 allele. However, up-regulation of DNA damage genes occurred regardless of ATXR6 levels and thus appears to be a separable process. We also isolated an atxr6-null allele which showed that ATXR5 and ATXR6 are required for female germline development. Finally, we characterize three previously reported suppressors of the hypomorphic atxr5/6 mutant and show that these rescue atxr5/6 via distinct mechanisms, two of which involve increasing H3K27me1 levels.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , DNA Transposable Elements , Gene Expression Regulation, Plant , Genomic Instability , Methyltransferases/genetics , Alleles , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Epigenesis, Genetic , Heterochromatin/metabolism , Histones/metabolism , Methyltransferases/metabolism , Mutation , Phenotype , Transcriptome
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33495321

ABSTRACT

DNA methylation is a major epigenetic modification found across species and has a profound impact on many biological processes. However, its influence on chromatin accessibility and higher-order genome organization remains unclear, particularly in plants. Here, we present genome-wide chromatin accessibility profiles of 18 Arabidopsis mutants that are deficient in CG, CHG, or CHH DNA methylation. We find that DNA methylation in all three sequence contexts impacts chromatin accessibility in heterochromatin. Many chromatin regions maintain inaccessibility when DNA methylation is lost in only one or two sequence contexts, and signatures of accessibility are particularly affected when DNA methylation is reduced in all contexts, suggesting an interplay between different types of DNA methylation. In addition, we found that increased chromatin accessibility was not always accompanied by increased transcription, suggesting that DNA methylation can directly impact chromatin structure by other mechanisms. We also observed that an increase in chromatin accessibility was accompanied by enhanced long-range chromatin interactions. Together, these results provide a valuable resource for chromatin architecture and DNA methylation analyses and uncover a pivotal role for methylation in the maintenance of heterochromatin inaccessibility.


Subject(s)
Arabidopsis/genetics , Chromatin/genetics , DNA Methylation/genetics , Genome, Plant , Mutation/genetics , Transcription, Genetic
3.
Genome Biol ; 21(1): 283, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33234150

ABSTRACT

BACKGROUND: Chromatin organizes DNA and regulates its transcriptional activity through epigenetic modifications. Heterochromatic regions of the genome are generally transcriptionally silent, while euchromatin is more prone to transcription. During DNA replication, both genetic information and chromatin modifications must be faithfully passed on to daughter strands. There is evidence that DNA polymerases play a role in transcriptional silencing, but the extent of their contribution and how it relates to heterochromatin maintenance is unclear. RESULTS: We isolate a strong hypomorphic Arabidopsis thaliana mutant of the POL2A catalytic subunit of DNA polymerase epsilon and show that POL2A is required to stabilize heterochromatin silencing genome-wide, likely by preventing replicative stress. We reveal that POL2A inhibits DNA methylation and histone H3 lysine 9 methylation. Hence, the release of heterochromatin silencing in POL2A-deficient mutants paradoxically occurs in a chromatin context of increased levels of these two repressive epigenetic marks. At the nuclear level, the POL2A defect is associated with fragmentation of heterochromatin. CONCLUSION: These results indicate that POL2A is critical to heterochromatin structure and function, and that unhindered replisome progression is required for the faithful propagation of DNA methylation throughout the cell cycle.


Subject(s)
Arabidopsis/metabolism , Chromatin/metabolism , DNA Polymerase II/metabolism , Heterochromatin/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Cycle/genetics , DNA Methylation , DNA Polymerase II/genetics , DNA Replication , Epigenesis, Genetic , Euchromatin/metabolism , Gene Silencing , Histones/metabolism , Up-Regulation
4.
Nat Commun ; 10(1): 3352, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31350403

ABSTRACT

Deposition of the histone variant H2A.Z by the SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is important for gene regulation in eukaryotes, but the composition of the Arabidopsis SWR1-C has not been thoroughly characterized. Here, we aim to identify interacting partners of a conserved Arabidopsis SWR1 subunit ACTIN-RELATED PROTEIN 6 (ARP6). We isolate nine predicted components and identify additional interactors implicated in histone acetylation and chromatin biology. One of the interacting partners, methyl-CpG-binding domain 9 (MBD9), also strongly interacts with the Imitation SWItch (ISWI) chromatin remodeling complex. MBD9 is required for deposition of H2A.Z at a distinct subset of ARP6-dependent loci. MBD9 is preferentially bound to nucleosome-depleted regions at the 5' ends of genes containing high levels of activating histone marks. These data suggest that MBD9 is a SWR1-C interacting protein required for H2A.Z deposition at a subset of actively transcribing genes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Histone Acetyltransferases/metabolism , Histones/metabolism , Microfilament Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromatin Assembly and Disassembly , Gene Expression Regulation, Plant , Histone Acetyltransferases/genetics , Histones/genetics , Microfilament Proteins/genetics , Protein Binding
5.
Dev Cell ; 45(6): 769-784.e6, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29920280

ABSTRACT

Serrate (SE) is a key component in RNA metabolism. Little is known about whether and how it can regulate epigenetic silencing. Here, we report histone methyltransferases ATXR5 and ATXR6 (ATXR5/6) as novel partners of SE. ATXR5/6 deposit histone 3 lysine 27 monomethylation (H3K27me1) to promote heterochromatin formation, repress transposable elements (TEs), and control genome stability in Arabidopsis. SE binds to ATXR5/6-regulated TE loci and promotes H3K27me1 accumulation in these regions. Furthermore, SE directly enhances ATXR5 enzymatic activity in vitro. Unexpectedly, se mutation suppresses the TE reactivation and DNA re-replication phenotypes in the atxr5 atxr6 mutant. The suppression of TE expression results from triggering RNA-dependent RNA polymerase 6 (RDR6)-dependent RNA silencing in the se atxr5 atxr6 mutant. We propose that SE facilitates ATXR5/6-mediated deposition of the H3K27me1 mark while inhibiting RDR6-mediated RNA silencing to protect TE transcripts. Hence, SE coordinates epigenetic silencing and RNA processing machineries to fine-tune the TE expression.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA Transposable Elements , Methyltransferases/metabolism , RNA, Plant/metabolism , RNA-Binding Proteins/metabolism , RNA-Dependent RNA Polymerase/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , DNA Methylation , DNA Replication , Gene Expression , Gene Silencing , Genomic Instability , Histones/metabolism , Methyltransferases/genetics , RNA/metabolism , RNA, Plant/genetics , RNA-Binding Proteins/genetics , RNA-Dependent RNA Polymerase/genetics
6.
PLoS Genet ; 12(6): e1006092, 2016 06.
Article in English | MEDLINE | ID: mdl-27253878

ABSTRACT

Eukaryotic genomes are regulated by epigenetic marks that act to modulate transcriptional control as well as to regulate DNA replication and repair. In Arabidopsis thaliana, mutation of the ATXR5 and ATXR6 histone methyltransferases causes reduction in histone H3 lysine 27 monomethylation, transcriptional upregulation of transposons, and a genome instability defect in which there is an accumulation of excess DNA corresponding to pericentromeric heterochromatin. We designed a forward genetic screen to identify suppressors of the atxr5/6 phenotype that uncovered loss-of-function mutations in two components of the TREX-2 complex (AtTHP1, AtSAC3B), a SUMO-interacting E3 ubiquitin ligase (AtSTUbL2) and a methyl-binding domain protein (AtMBD9). Additionally, using a reverse genetic approach, we show that a mutation in a plant homolog of the tumor suppressor gene BRCA1 enhances the atxr5/6 phenotype. Through characterization of these mutations, our results suggest models for the production atxr5 atxr6-induced extra DNA involving conflicts between the replicative and transcriptional processes in the cell, and suggest that the atxr5 atxr6 transcriptional defects may be the cause of the genome instability defects in the mutants. These findings highlight the critical intersection of transcriptional silencing and DNA replication in the maintenance of genome stability of heterochromatin.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant/genetics , Gene Silencing/physiology , Genomic Instability/genetics , Transcription, Genetic/genetics , Caspases/genetics , DNA Methylation/genetics , DNA Replication/genetics , Heterochromatin/genetics , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Methyltransferases/genetics , Mutation/genetics
7.
Cell ; 153(4): 759-72, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23663776

ABSTRACT

Early vertebrate embryos must achieve totipotency and prepare for zygotic genome activation (ZGA). To understand this process, we determined the DNA methylation (DNAme) profiles of zebrafish gametes, embryos at different stages, and somatic muscle and compared them to gene activity and histone modifications. Sperm chromatin patterns are virtually identical to those at ZGA. Unexpectedly, the DNA of many oocyte genes important for germline functions (i.e., piwil1) or early development (i.e., hox genes) is methylated, but the loci are demethylated during zygotic cleavage stages to precisely the state observed in sperm, even in parthenogenetic embryos lacking a replicating paternal genome. Furthermore, this cohort constitutes the genes and loci that acquire DNAme during development (i.e., ZGA to muscle). Finally, DNA methyltransferase inhibition experiments suggest that DNAme silences particular gene and chromatin cohorts at ZGA, preventing their precocious expression. Thus, zebrafish achieve a totipotent chromatin state at ZGA through paternal genome competency and maternal genome DNAme reprogramming.


Subject(s)
DNA Methylation , Embryo, Nonmammalian/metabolism , Zebrafish/genetics , Animals , Epigenesis, Genetic , Female , Fertilization , Male , Oocytes/metabolism , Spermatozoa/metabolism , Transcription Initiation Site , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...