Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 479(4): 479-501, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35089310

ABSTRACT

A genetic selection system for activity of HIV protease is described that is based on a synthetic substrate constructed as a modified AraC regulatory protein that when cleaved stimulate l-arabinose metabolism in an Escherichia coli araC strain. Growth stimulation on selective plates was shown to depend on active HIV protease and the scissile bond in the substrate. In addition, the growth of cells correlated well with the established cleavage efficiency of the sites in the viral polyprotein, Gag, when these sites were individually introduced into the synthetic substrate of the selection system. Plasmids encoding protease variants selected based on stimulation of cell growth in the presence of saquinavir or cleavage of a site not cleaved by wild-type protease, were indistinguishable with respect to both phenotypes. Also, both groups of selected plasmids encoded side chain substitutions known from clinical isolates or displayed different side chain substitutions but at identical positions. One highly frequent side chain substitution, E34V, not regarded as a major drug resistance substitution was found in variants obtained under both selective conditions and is suggested to improve protease processing of the synthetic substrate. This substitution is away from the substrate-binding cavity and together with other substitutions in the selected reading frames supports the previous suggestion of a substrate-binding site extended from the active site binding pocket itself.


Subject(s)
Anti-HIV Agents/pharmacokinetics , Drug Resistance, Viral/genetics , HIV Protease/genetics , Amino Acid Substitution , AraC Transcription Factor/genetics , Arabinose/metabolism , Chymosin/metabolism , Escherichia coli , Escherichia coli Proteins/genetics , Fusion Proteins, gag-pol/metabolism , Gene Products, gag/metabolism , Genes, araC , HIV Protease/chemistry , HIV Protease/isolation & purification , HIV Protease/metabolism , Models, Molecular , Mutation, Missense , Point Mutation , Protein Conformation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saquinavir/antagonists & inhibitors , Saquinavir/pharmacology , Selection, Genetic , Sequence Alignment , Sequence Homology, Amino Acid , Structure-Activity Relationship , Substrate Specificity
2.
Biochemistry ; 51(40): 8039-46, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-22989181

ABSTRACT

The active site for the family GH38 class II α-mannosidase is constituted in part by a divalent metal ion, mostly Zn(2+), as revealed in the crystal structures of enzymes from both animal and bacterial sources. The metal ion coordinates to the bound substrate and side chains of conserved amino acid residues. Recently, evidence has accumulated that class II α-mannosidase is active in complex with a range of divalent metal ions. In the present work, with employment of the class II α-mannosidase, ManA, from the hyperthermophilic archaeon Sulfolobus solfataricus, we explored the influence of the divalent metal ion on the associated steady-state kinetic parameters, K(M) and k(cat), for various substrates. With p-nitrophenyl-α-d-mannoside as a substrate, the enzyme showed activity in the presence of Co(2+), Cd(2+), Mn(2+), and Zn(2+), whereas Ni(2+) and Cu(2+) were inhibitory and nonactivating. Co(2+) was the preferred metal ion, with a k(cat)/K(M) value of about 120 mM(-1) s(-1), 6 times higher than that with Cd(2+) and Zn(2+) and 10 times higher than that with Mn(2+). With α-1,2-, α-1,3-, α-1,4-, or α-1,6-mannobiose as a substrate, Co(2+) was the only metal ion promoting hydrolysis of all substrates; however, Mn(2+), Cd(2+), and Zn(2+) could substitute to a varying extent. A change in the divalent metal ion generally affected the K(M) for the hydrolysis of p-nitrophenyl-α-d-mannoside; however, changes in both k(cat) and K(M) for the hydrolysis of α-mannobioses were observed, along with changing preferences for the glycosidic linkage. Finally, it was found that the metal ion and substrate bind in that order via a steady-state, ordered, sequential mechanism.


Subject(s)
Bacterial Proteins/classification , Bacterial Proteins/metabolism , Metals/metabolism , Sulfolobus solfataricus/enzymology , alpha-Mannosidase/classification , alpha-Mannosidase/metabolism , Bacterial Proteins/genetics , Catalytic Domain , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Metals/chemistry , Models, Molecular , Molecular Sequence Data , Protein Conformation , Substrate Specificity , alpha-Mannosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL