Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Basic Med Sci ; 23(5): 673-679, 2020 May.
Article in English | MEDLINE | ID: mdl-32742606

ABSTRACT

OBJECTIVES: One of the essential problems in burn therapy is performing the permanent replacement of skin in full and deep thickness injuries. Human Wharton's Jelly mesenchymal stem cells (HWJMSCs) have a unique combination of prenatal and postnatal properties. Decellularized human amniotic membrane (DHAM) can be used as a scaffold for HWJMSCs-therapy. We aimed to evaluate the quantity and quality of healing in the early excision burn wound dressing with 3-dimensional and 2- dimensional cell cultures. MATERIALS AND METHODS: Amniotic and umbilical cords were isolated from the mothers who were candidates for cesarean section. HAM was decellularized using the mechanical and enzymatic method. HWJMSCs were isolated and cultured; cell surface markers were examined for authentication of MSCs and labeled using a viral vector containing the cGFP gene. Burns were created using brass bar in 32 adult male Albino rats and randomly divided into four groups (DHAM+HWJMSCs, injection of HWJMSCs, HWJMSCs was spread on the wound, and DHAM alone). Rats were sacrificed on the 7th and 14th days for pathological examination of the wound. Comparisons between the study groups were made by one-way analysis of variance. RESULTS: Wound healing process in DHAM+HWJMSCs was much more progressed during the first week in comparison to other groups, and exhibited significant differences in re-epithelialization, formation of granulation tissue, and hemorrhage (P<0.05). CONCLUSION: The utility of the amniotic scaffold seeded by the human mesenchymal stem cells is recommended for accelerating the healing process.

2.
Iran J Basic Med Sci ; 21(1): 70-76, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29372039

ABSTRACT

OBJECTIVES: Human Wharton's Jelly mesenchymal stem cells (hWMSCs) are undifferentiated cells commonly used in regenerative medicine. The aim of this study was to develop a reliable tool for tracking hWMSCs when utilized as therapeutics in burnt disorders and also to optimize the cell-based treatment procedure. MATERIALS AND METHODS: The hWMSCs were first isolated from fresh umbilical cord Wharton's jelly and cultured. The 293LTV cell line was transfected by cGFP containing lentiviral vector and the helper plasmids for production of the viral particle. The viral particles were collected to transduce the hWMSCs. The transduced cells were finally selected based on resistance to puromycin. The burned rats (n=24) were treated with cGFP expressing hWMSCs using the cell spray method, with the cells being tracked 7, 14 and 21 days later. The rats were sacrificed 7, 14 and 21 days following treatment and paraffin embedded sections prepared from the burned area for downstream pathological analyses. RESULTS: The lentiviral particles carrying the cGFP gene were generated and the hWMSCs were transduced. The cGFP-expressing hWMSCs were detected in the burned tissue and the burned injuries were improved dramatically as compared to control. CONCLUSION: Because of the establishment of stably transduced cGFP expressing cells and the ability to detect cGFP for a relatively long-time interval, the method was found to be quite efficient for the purpose of cell tracking. The combination of hWMSC-based cell therapy and sterile Gauze Vaseline (GV) as covering was proven much more efficient than the traditional methods based on GV alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...