Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Radiol Artif Intell ; 6(3): e230333, 2024 May.
Article in English | MEDLINE | ID: mdl-38446044

ABSTRACT

Purpose To develop and externally test a scan-to-prediction deep learning pipeline for noninvasive, MRI-based BRAF mutational status classification for pediatric low-grade glioma. Materials and Methods This retrospective study included two pediatric low-grade glioma datasets with linked genomic and diagnostic T2-weighted MRI data of patients: Dana-Farber/Boston Children's Hospital (development dataset, n = 214 [113 (52.8%) male; 104 (48.6%) BRAF wild type, 60 (28.0%) BRAF fusion, and 50 (23.4%) BRAF V600E]) and the Children's Brain Tumor Network (external testing, n = 112 [55 (49.1%) male; 35 (31.2%) BRAF wild type, 60 (53.6%) BRAF fusion, and 17 (15.2%) BRAF V600E]). A deep learning pipeline was developed to classify BRAF mutational status (BRAF wild type vs BRAF fusion vs BRAF V600E) via a two-stage process: (a) three-dimensional tumor segmentation and extraction of axial tumor images and (b) section-wise, deep learning-based classification of mutational status. Knowledge-transfer and self-supervised approaches were investigated to prevent model overfitting, with a primary end point of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, a novel metric, center of mass distance, was developed to quantify the model attention around the tumor. Results A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest classification performance with an AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 (95% CI: 0.61, 0.97), and 0.85 (95% CI: 0.66, 0.95) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively, on internal testing. On external testing, the pipeline yielded an AUC of 0.72 (95% CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89), and 0.72 (95% CI: 0.64, 0.88) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively. Conclusion Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pediatric low-grade glioma mutational status prediction in a limited data scenario. Keywords: Pediatrics, MRI, CNS, Brain/Brain Stem, Oncology, Feature Detection, Diagnosis, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Brain Neoplasms , Glioma , Humans , Child , Male , Female , Brain Neoplasms/diagnostic imaging , Retrospective Studies , Proto-Oncogene Proteins B-raf/genetics , Glioma/diagnosis , Machine Learning
2.
Nat Commun ; 14(1): 6863, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945573

ABSTRACT

Lean muscle mass (LMM) is an important aspect of human health. Temporalis muscle thickness is a promising LMM marker but has had limited utility due to its unknown normal growth trajectory and reference ranges and lack of standardized measurement. Here, we develop an automated deep learning pipeline to accurately measure temporalis muscle thickness (iTMT) from routine brain magnetic resonance imaging (MRI). We apply iTMT to 23,876 MRIs of healthy subjects, ages 4 through 35, and generate sex-specific iTMT normal growth charts with percentiles. We find that iTMT was associated with specific physiologic traits, including caloric intake, physical activity, sex hormone levels, and presence of malignancy. We validate iTMT across multiple demographic groups and in children with brain tumors and demonstrate feasibility for individualized longitudinal monitoring. The iTMT pipeline provides unprecedented insights into temporalis muscle growth during human development and enables the use of LMM tracking to inform clinical decision-making.


Subject(s)
Growth Charts , Temporal Muscle , Male , Female , Humans , Child , Temporal Muscle/diagnostic imaging , Temporal Muscle/pathology
3.
JAMA Netw Open ; 6(7): e2324369, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37466939

ABSTRACT

Importance: Acute neurological involvement occurs in some patients with multisystem inflammatory syndrome in children (MIS-C), but few data report neurological and psychological sequelae, and no investigations include direct assessments of cognitive function 6 to 12 months after discharge. Objective: To characterize neurological, psychological, and quality of life sequelae after MIS-C. Design, Setting, and Participants: This cross-sectional cohort study was conducted in the US and Canada. Participants included children with MIS-C diagnosed from November 2020 through November 2021, 6 to 12 months after hospital discharge, and their sibling or community controls, when available. Data analysis was performed from August 2022 to May 2023. Exposure: Diagnosis of MIS-C. Main Outcomes and Measures: A central study site remotely administered a onetime neurological examination and in-depth neuropsychological assessment including measures of cognition, behavior, quality of life, and daily function. Generalized estimating equations, accounting for matching, assessed for group differences. Results: Sixty-four patients with MIS-C (mean [SD] age, 11.5 [3.9] years; 20 girls [31%]) and 44 control participants (mean [SD] age, 12.6 [3.7] years; 20 girls [45%]) were enrolled. The MIS-C group exhibited abnormalities on neurological examination more frequently than controls (15 of 61 children [25%] vs 3 of 43 children [7%]; odds ratio, 4.7; 95% CI, 1.3-16.7). Although the 2 groups performed similarly on most cognitive measures, the MIS-C group scored lower on the National Institutes of Health Cognition Toolbox List Sort Working Memory Test, a measure of executive functioning (mean [SD] scores, 96.1 [14.3] vs 103.1 [10.5]). Parents reported worse psychological outcomes in cases compared with controls, particularly higher scores for depression symptoms (mean [SD] scores, 52.6 [13.1] vs 47.8 [9.4]) and somatization (mean [SD] scores, 55.5 [15.5] vs 47.0 [7.6]). Self-reported (mean [SD] scores, 79.6 [13.1] vs 85.5 [12.3]) and parent-reported (mean [SD] scores, 80.3 [15.5] vs 88.6 [13.0]) quality of life scores were also lower in cases than controls. Conclusions and Relevance: In this cohort study, compared with contemporaneous sibling or community controls, patients with MIS-C had more abnormal neurologic examinations, worse working memory scores, more somatization and depression symptoms, and lower quality of life 6 to 12 months after hospital discharge. Although these findings need to be confirmed in larger studies, enhanced monitoring may be warranted for early identification and treatment of neurological and psychological symptoms.


Subject(s)
Connective Tissue Diseases , Quality of Life , United States , Child , Female , Humans , Cross-Sectional Studies , Cohort Studies , Systemic Inflammatory Response Syndrome , Disease Progression
4.
J Am Coll Radiol ; 20(5): 479-486, 2023 05.
Article in English | MEDLINE | ID: mdl-37121627

ABSTRACT

The ACR Intersociety Committee meeting of 2022 (ISC-2022) was convened around the theme of "Recovering From The Great Resignation, Moral Injury and Other Stressors: Rebuilding Radiology for a Robust Future." Representatives from 29 radiology organizations, including all radiology subspecialties, radiation oncology, and medical physics, as well as academic and private practice radiologists, met for 3 days in early August in Park City, Utah, to search for solutions to the most pressing problems facing the specialty of radiology in 2022. Of these, the mismatch between the clinical workload and the available radiologist workforce was foremost-as many other identifiable problems flowed downstream from this, including high job turnover, lack of time for teaching and research, radiologist burnout, and moral injury.


Subject(s)
Radiation Oncology , Radiology , Humans , United States , Radiologists , Radiography , Utah
5.
Pediatr Blood Cancer ; 70 Suppl 4: e30150, 2023 06.
Article in English | MEDLINE | ID: mdl-36562555

ABSTRACT

Childhood spinal tumors are rare. Tumors can involve the spinal cord, the meninges, bony spine, and the paraspinal tissue. Optimized imaging should be utilized to evaluate tumors arising from specific spinal compartments. This paper provides consensus-based recommendations for optimized imaging of tumors arising from specific spinal compartments at diagnosis, follow-up during and after therapy, and response assessment.


Subject(s)
Spinal Cord Neoplasms , Surface Plasmon Resonance , Child , Humans , Spine , Spinal Cord Neoplasms/diagnostic imaging , Spinal Cord , Magnetic Resonance Imaging
6.
JAMA Neurol ; 80(1): 91-98, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36342679

ABSTRACT

Importance: In 2020 during the COVID-19 pandemic, neurologic involvement was common in children and adolescents hospitalized in the United States for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related complications. Objective: To provide an update on the spectrum of SARS-CoV-2-related neurologic involvement among children and adolescents in 2021. Design, Setting, and Participants: Case series investigation of patients reported to public health surveillance hospitalized with SARS-CoV-2-related illness between December 15, 2020, and December 31, 2021, in 55 US hospitals in 31 states with follow-up at hospital discharge. A total of 2253 patients were enrolled during the investigation period. Patients suspected of having multisystem inflammatory syndrome in children (MIS-C) who did not meet criteria (n = 85) were excluded. Patients (<21 years) with positive SARS-CoV-2 test results (reverse transcriptase-polymerase chain reaction and/or antibody) meeting criteria for MIS-C or acute COVID-19 were included in the analysis. Exposure: SARS-CoV-2 infection. Main Outcomes and Measures: Patients with neurologic involvement had acute neurologic signs, symptoms, or diseases on presentation or during hospitalization. Life-threatening neurologic involvement was adjudicated by experts based on clinical and/or neuroradiological features. Type and severity of neurologic involvement, laboratory and imaging data, vaccination status, and hospital discharge outcomes (death or survival with new neurologic deficits). Results: Of 2168 patients included (58% male; median age, 10.3 years), 1435 (66%) met criteria for MIS-C, and 476 (22%) had documented neurologic involvement. Patients with neurologic involvement vs without were older (median age, 12 vs 10 years) and more frequently had underlying neurologic disorders (107 of 476 [22%] vs 240 of 1692 [14%]). Among those with neurologic involvement, 42 (9%) developed acute SARS-CoV-2-related life-threatening conditions, including central nervous system infection/demyelination (n = 23; 15 with possible/confirmed encephalitis, 6 meningitis, 1 transverse myelitis, 1 nonhemorrhagic leukoencephalopathy), stroke (n = 11), severe encephalopathy (n = 5), acute fulminant cerebral edema (n = 2), and Guillain-Barré syndrome (n = 1). Ten of 42 (24%) survived with new neurologic deficits at discharge and 8 (19%) died. Among patients with life-threatening neurologic conditions, 15 of 16 vaccine-eligible patients (94%) were unvaccinated. Conclusions and Relevance: SARS-CoV-2-related neurologic involvement persisted in US children and adolescents hospitalized for COVID-19 or MIS-C in 2021 and was again mostly transient. Central nervous system infection/demyelination accounted for a higher proportion of life-threatening conditions, and most vaccine-eligible patients were unvaccinated. COVID-19 vaccination may prevent some SARS-CoV-2-related neurologic complications and merits further study.


Subject(s)
COVID-19 , Guillain-Barre Syndrome , Nervous System Diseases , Stroke , Adolescent , Child , Humans , Male , United States/epidemiology , Female , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Inpatients , Pandemics , COVID-19 Vaccines , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Stroke/epidemiology , Guillain-Barre Syndrome/epidemiology
7.
Neuro Oncol ; 24(2): 289-299, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34174070

ABSTRACT

BACKGROUND: Longitudinal measurement of tumor burden with magnetic resonance imaging (MRI) is an essential component of response assessment in pediatric brain tumors. We developed a fully automated pipeline for the segmentation of tumors in pediatric high-grade gliomas, medulloblastomas, and leptomeningeal seeding tumors. We further developed an algorithm for automatic 2D and volumetric size measurement of tumors. METHODS: The preoperative and postoperative cohorts were randomly split into training and testing sets in a 4:1 ratio. A 3D U-Net neural network was trained to automatically segment the tumor on T1 contrast-enhanced and T2/FLAIR images. The product of the maximum bidimensional diameters according to the RAPNO (Response Assessment in Pediatric Neuro-Oncology) criteria (AutoRAPNO) was determined. Performance was compared to that of 2 expert human raters who performed assessments independently. Volumetric measurements of predicted and expert segmentations were computationally derived and compared. RESULTS: A total of 794 preoperative MRIs from 794 patients and 1003 postoperative MRIs from 122 patients were included. There was excellent agreement of volumes between preoperative and postoperative predicted and manual segmentations, with intraclass correlation coefficients (ICCs) of 0.912 and 0.960 for the 2 preoperative and 0.947 and 0.896 for the 2 postoperative models. There was high agreement between AutoRAPNO scores on predicted segmentations and manually calculated scores based on manual segmentations (Rater 2 ICC = 0.909; Rater 3 ICC = 0.851). Lastly, the performance of AutoRAPNO was superior in repeatability to that of human raters for MRIs with multiple lesions. CONCLUSIONS: Our automated deep learning pipeline demonstrates potential utility for response assessment in pediatric brain tumors. The tool should be further validated in prospective studies.


Subject(s)
Cerebellar Neoplasms , Deep Learning , Glioma , Medulloblastoma , Child , Glioma/diagnostic imaging , Glioma/pathology , Glioma/surgery , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Medulloblastoma/diagnostic imaging , Medulloblastoma/surgery , Prospective Studies , Tumor Burden
9.
JAMA Neurol ; 78(5): 536-547, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33666649

ABSTRACT

Importance: Coronavirus disease 2019 (COVID-19) affects the nervous system in adult patients. The spectrum of neurologic involvement in children and adolescents is unclear. Objective: To understand the range and severity of neurologic involvement among children and adolescents associated with COVID-19. Setting, Design, and Participants: Case series of patients (age <21 years) hospitalized between March 15, 2020, and December 15, 2020, with positive severe acute respiratory syndrome coronavirus 2 test result (reverse transcriptase-polymerase chain reaction and/or antibody) at 61 US hospitals in the Overcoming COVID-19 public health registry, including 616 (36%) meeting criteria for multisystem inflammatory syndrome in children. Patients with neurologic involvement had acute neurologic signs, symptoms, or diseases on presentation or during hospitalization. Life-threatening involvement was adjudicated by experts based on clinical and/or neuroradiologic features. Exposures: Severe acute respiratory syndrome coronavirus 2. Main Outcomes and Measures: Type and severity of neurologic involvement, laboratory and imaging data, and outcomes (death or survival with new neurologic deficits) at hospital discharge. Results: Of 1695 patients (909 [54%] male; median [interquartile range] age, 9.1 [2.4-15.3] years), 365 (22%) from 52 sites had documented neurologic involvement. Patients with neurologic involvement were more likely to have underlying neurologic disorders (81 of 365 [22%]) compared with those without (113 of 1330 [8%]), but a similar number were previously healthy (195 [53%] vs 723 [54%]) and met criteria for multisystem inflammatory syndrome in children (126 [35%] vs 490 [37%]). Among those with neurologic involvement, 322 (88%) had transient symptoms and survived, and 43 (12%) developed life-threatening conditions clinically adjudicated to be associated with COVID-19, including severe encephalopathy (n = 15; 5 with splenial lesions), stroke (n = 12), central nervous system infection/demyelination (n = 8), Guillain-Barré syndrome/variants (n = 4), and acute fulminant cerebral edema (n = 4). Compared with those without life-threatening conditions (n = 322), those with life-threatening neurologic conditions had higher neutrophil-to-lymphocyte ratios (median, 12.2 vs 4.4) and higher reported frequency of D-dimer greater than 3 µg/mL fibrinogen equivalent units (21 [49%] vs 72 [22%]). Of 43 patients who developed COVID-19-related life-threatening neurologic involvement, 17 survivors (40%) had new neurologic deficits at hospital discharge, and 11 patients (26%) died. Conclusions and Relevance: In this study, many children and adolescents hospitalized for COVID-19 or multisystem inflammatory syndrome in children had neurologic involvement, mostly transient symptoms. A range of life-threatening and fatal neurologic conditions associated with COVID-19 infrequently occurred. Effects on long-term neurodevelopmental outcomes are unknown.


Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , Systemic Inflammatory Response Syndrome/etiology , Adolescent , COVID-19/etiology , COVID-19/mortality , Child , Child, Preschool , Critical Care , Female , Hospitalization , Humans , Male , Nervous System Diseases/mortality , Patient Discharge/statistics & numerical data , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Systemic Inflammatory Response Syndrome/complications , Treatment Outcome , United States/epidemiology
10.
Vaccines (Basel) ; 10(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35062704

ABSTRACT

A 12-year-old male was presented to the hospital with acute encephalopathy, headache, vomiting, diarrhea, and elevated troponin after recent COVID-19 vaccination. Two days prior to admission and before symptom onset, he received the second dose of the Pfizer-BioNTech COVID-19 vaccine. Symptoms developed within 24 h with worsening neurologic symptoms, necessitating admission to the pediatric intensive care unit. Brain magnetic resonance imaging within 16 h of admission revealed a cytotoxic splenial lesion of the corpus callosum (CLOCC). Nineteen days prior to admission, he developed erythema migrans, and completed an amoxicillin treatment course for clinical Lyme disease. However, Lyme antibody titers were negative on admission and nine days later, making active Lyme disease an unlikely explanation for his presentation to hospital. An extensive workup for other etiologies on cerebrospinal fluid and blood samples was negative, including infectious and autoimmune causes and known immune deficiencies. Three weeks after hospital discharge, all of his symptoms had dissipated, and he had a normal neurologic exam. Our report highlights a potential role of mRNA vaccine-induced immunity leading to MIS-C-like symptoms with cardiac involvement and a CLOCC in a recently vaccinated child and the complexity of establishing a causal association with vaccination. The child recovered without receipt of immune modulatory treatment.

11.
Lancet Oncol ; 21(6): e317-e329, 2020 06.
Article in English | MEDLINE | ID: mdl-32502458

ABSTRACT

Response criteria for paediatric high-grade glioma vary historically and across different cooperative groups. The Response Assessment in Neuro-Oncology working group developed response criteria for adult high-grade glioma, but these were not created to meet the unique challenges in children with the disease. The Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group, consisting of an international panel of paediatric and adult neuro-oncologists, clinicians, radiologists, radiation oncologists, and neurosurgeons, was established to address issues and unique challenges in assessing response in children with CNS tumours. We established a subcommittee to develop response assessment criteria for paediatric high-grade glioma. Current practice and literature were reviewed to identify major challenges in assessing the response of paediatric high-grade gliomas to various treatments. For areas in which scientific investigation was scarce, consensus was reached through an iterative process. RAPNO response assessment recommendations include the use of MRI of the brain and the spine, assessment of clinical status, and the use of corticosteroids or antiangiogenics. Imaging standards for brain and spine are defined. Compared with the recommendations for the management of adult high-grade glioma, for paediatrics there is inclusion of diffusion-weighted imaging and a higher reliance on T2-weighted fluid-attenuated inversion recovery. Consensus recommendations and response definitions have been established and, similar to other RAPNO recommendations, prospective validation in clinical trials is warranted.


Subject(s)
Central Nervous System Neoplasms/diagnostic imaging , Central Nervous System Neoplasms/therapy , Diffusion Magnetic Resonance Imaging/standards , Endpoint Determination/standards , Glioma/diagnostic imaging , Glioma/therapy , Neuroimaging/standards , Adolescent , Age of Onset , Central Nervous System Neoplasms/epidemiology , Central Nervous System Neoplasms/pathology , Child , Consensus , Female , Glioma/epidemiology , Glioma/pathology , Humans , Male , Neoplasm Grading , Predictive Value of Tests , Time Factors , Treatment Outcome , Tumor Burden
12.
Neuro Oncol ; 22(11): 1696-1704, 2020 11 26.
Article in English | MEDLINE | ID: mdl-32393959

ABSTRACT

BACKGROUND: Craniopharyngiomas account for approximately 1.2-4% of all CNS tumors. They are typically treated with a combination of surgical resection and focal radiotherapy. Unfortunately, treatment can lead to permanent deleterious effects on behavior, learning, and endocrine function. METHODS: The Pediatric Brain Tumor Consortium performed a multicenter phase 2 study in children and young adults with unresectable or recurrent craniopharyngioma (PBTC-039). Between December 2013 and November 2017, nineteen patients (median age at enrollment, 13.1 y; range, 2-25 y) were enrolled in one of 2 strata: patients previously treated with surgery alone (stratum 1) or who received radiation (stratum 2). RESULTS: Eighteen eligible patients (8 male, 10 female) were treated with weekly subcutaneous pegylated interferon alpha-2b for up to 18 courses (108 wk). Therapy was well tolerated with no grade 4 or 5 toxicities. 2 of the 7 eligible patients (28.6%) in stratum 1 had a partial response, but only one response was sustained for more than 3 months. None of the 11 stratum 2 patients had an objective radiographic response, although median progression-free survival was 19.5 months. CONCLUSIONS: Pegylated interferon alpha-2b treatment, in lieu of or following radiotherapy, was well tolerated in children and young adults with recurrent craniopharyngiomas. Although objective responses were limited, progression-free survival results are encouraging, warranting further studies.


Subject(s)
Brain Neoplasms , Craniopharyngioma , Interferon alpha-2/therapeutic use , Interferon-alpha/therapeutic use , Polyethylene Glycols/therapeutic use , Adolescent , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Child , Child, Preschool , Craniopharyngioma/drug therapy , Craniopharyngioma/radiotherapy , Female , Humans , Infant , Male , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/radiotherapy , Recombinant Proteins/therapeutic use , Treatment Outcome
13.
Int J Radiat Oncol Biol Phys ; 105(5): 1034-1042, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31472183

ABSTRACT

PURPOSE: Brainstem necrosis is a rare, but dreaded complication of radiation therapy; however, data on the incidence of brainstem injury for tumors involving the posterior fossa in photon-treated patient cohorts are still needed. METHODS AND MATERIALS: Clinical characteristics and dosimetric parameters were recorded for 107 pediatric patients who received photon radiation for posterior fossa tumors without brainstem involvement from 2000 to 2016. Patients were excluded if they received a prescription dose <50.4 Gy, a brainstem maximum dose <50.4 Gy, or had fewer than 2 magnetic resonance imaging scans within 18 months after radiation. Post-radiation therapy magnetic resonance imaging findings were recorded, and brainstem toxicity was graded using National Cancer Institute Common Terminology Criteria for Adverse Events, version 5. RESULTS: The most common histologies were medulloblastoma (61.7%) and ependymoma (15.9%), and median age at diagnosis was 8.3 years (range, 0.8-20.7). Sixty-seven patients (62.6%) received craniospinal irradiation (median, 23.4 Gy; range, 18.0-39.6) as a component of their radiation therapy, and 39.3% and 40.2% of patients received an additional involved field or whole posterior fossa boost, respectively. Median prescribed dose was 55.8 Gy (range, 50.4-60.0). Median clinical and imaging follow-up were 4.7 years (range, 0.1-17.5) and 4.2 years (range, 0.1-17.3), respectively. No grade ≥2 toxicities were observed. The incidence of grade 1 brainstem necrosis was 1.9% (2 of 107). These patients were by definition asymptomatic and experienced resolution of imaging abnormality after 5.3 months and 2.1 years, respectively. CONCLUSIONS: Risk of brainstem necrosis was minimal in this multi-institutional study of pediatric patients treated with photon radiation therapy for tumors involving the posterior fossa with no cases of symptomatic brainstem injury, suggesting that brainstem injury risk is minimal in patients treated with photon therapy.


Subject(s)
Brain Stem/radiation effects , Ependymoma/radiotherapy , Infratentorial Neoplasms/radiotherapy , Medulloblastoma/radiotherapy , Photons/adverse effects , Radiation Injuries/pathology , Adolescent , Brain Stem/diagnostic imaging , Brain Stem/pathology , Child , Child, Preschool , Craniospinal Irradiation/adverse effects , Craniospinal Irradiation/statistics & numerical data , Female , Humans , Incidence , Infant , Infratentorial Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Male , Necrosis/etiology , Radiation Injuries/diagnostic imaging , Radiation Injuries/epidemiology , Radiotherapy Dosage , Retrospective Studies , Young Adult
15.
Neuro Oncol ; 20(1): 13-23, 2018 01 10.
Article in English | MEDLINE | ID: mdl-28449033

ABSTRACT

Lack of standard response criteria in clinical trials for medulloblastoma and other seeding tumors complicates assessment of therapeutic efficacy and comparisons across studies. An international working group was established to develop consensus recommendations for response assessment. The aim is that these recommendations be prospectively evaluated in clinical trials, with the goal of achieving more reliable risk stratification and uniformity across clinical trials. Current practices and literature review were performed to identify major confounding issues and justify subsequently developed recommendations; in areas lacking scientific investigations, recommendations were based on experience of committee members and consensus was reached after discussion. Recommendations apply to both adult and pediatric patients with medulloblastoma and other seeding tumors. Response should be assessed using MR imaging (brain and spine), CSF cytology, and neurologic examination. Clinical imaging standards with minimum mandatory sequence acquisition that optimizes detection of leptomeningeal metastases are defined. We recommend central review prior to inclusion in treatment cohorts to ensure appropriate risk stratification and cohort inclusion. Consensus recommendations and response definitions for patients with medulloblastomas and other seeding tumors have been established; as with other Response Assessment in Neuro-Oncology recommendations, these need to now be prospectively validated in clinical trials.


Subject(s)
Brain Neoplasms , Medulloblastoma , Meningeal Neoplasms , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Child , Humans , Medulloblastoma/classification , Medulloblastoma/diagnostic imaging , Medulloblastoma/therapy , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/therapy , Neoplasm Seeding , Neuroimaging
16.
Pediatr Radiol ; 45 Suppl 3: S443-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26346150

ABSTRACT

Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics.


Subject(s)
Brain Neoplasms/diagnosis , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods , Child , Child, Preschool , Diagnosis, Differential , Female , Humans , Infant , Infant, Newborn , Male
17.
J Nucl Med ; 55(9): 1473-80, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25071098

ABSTRACT

UNLABELLED: The purpose of this study was to describe (18)F-FDG uptake across a spectrum of pediatric brain tumors and correlate (18)F-FDG PET with MR imaging variables, progression-free survival (PFS), and overall survival (OS). METHODS: A retrospective analysis was conducted of children enrolled in phase I/II clinical trials through the Pediatric Brain Tumor Consortium from August 2000 to June 2010. PET variables were summarized within diagnostic categories using descriptive statistics. Associations of PET with MR imaging variables and PFS and OS by tumor types were evaluated. RESULTS: Baseline (18)F-FDG PET was available in 203 children; 66 had newly diagnosed brain tumors, and 137 had recurrent/refractory brain tumors before enrolling in a Pediatric Brain Tumor Consortium trial. MR imaging was performed within 2 wk of PET and before therapy in all cases. The (18)F-FDG uptake pattern and MR imaging contrast enhancement (CE) varied by tumor type. On average, glioblastoma multiforme and medulloblastoma had uniform, intense uptake throughout the tumor, whereas brain stem gliomas (BSGs) had low uptake in less than 50% of the tumor and ependymoma had low uptake throughout the tumor. For newly diagnosed BSG, correlation of (18)F-FDG uptake with CE portended reduced OS (P = 0.032); in refractory/recurrent BSG, lack of correlation between (18)F-FDG uptake and CE suggested decreased PFS (P = 0.023). In newly diagnosed BSG for which more than 50% of the tumor had (18)F-FDG uptake, there was a suggestion of lower apparent diffusion coefficient (P = 0.061) and decreased PFS (P = 0.065). CONCLUSION: (18)F-FDG PET and MR imaging showed a spectrum of patterns depending on tumor type. In newly diagnosed BSG, the correlation of (18)F-FDG uptake and CE suggested decreased OS, likely related to more aggressive disease. When more than 50% of the tumor had (18)F-FDG uptake, the apparent diffusion coefficient was lower, consistent with increased cellularity. In refractory/recurrent BSG, poor correlation between (18)F-FDG uptake and CE was associated with decreased PFS, which may reflect concurrent tissue breakdown at sites of treated disease and development of new sites of (18)F-FDG-avid malignancy.


Subject(s)
Brain Neoplasms/diagnostic imaging , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Adolescent , Adult , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Child , Child, Preschool , Female , Glioma/diagnostic imaging , Glioma/mortality , Glioma/pathology , Humans , Infant , Magnetic Resonance Imaging , Male , Positron-Emission Tomography , Retrospective Studies
18.
Pediatrics ; 133(3): e751-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24515520

ABSTRACT

We report on 6 infants who underwent elective surgery and developed postoperative encephalopathy, which had features most consistent with intraoperative cerebral hypoperfusion. All infants were <48 weeks' postmenstrual age and underwent procedures lasting 120 to 185 minutes. Intraoperative records revealed that most of the measured systolic blood pressure (SBP) values were <60 mm Hg (the threshold for hypotension in awake infants according to the Pediatric Advanced Life Support guidelines) but that only 11% of the measured SBP values were <1 SD of the mean definition of hypotension (<45 mm Hg) as reported in a survey of members of the Society for Pediatric Anesthesia in 2009. Four infants also exhibited prolonged periods of mild hypocapnia (<35 mm Hg). One infant did not receive intraoperative dextrose. All infants developed new-onset seizures within 25 hours of administration of the anesthetic, with a predominant cerebral pathology of supratentorial watershed infarction in the border zone between the anterior, middle, and posterior cerebral arteries. Follow-up of these infants found that 1 died, 1 had profound developmental delays, 1 had minor motor delays, 2 were normal, and 1 was lost to follow-up. Although the precise cause of encephalopathy cannot be determined, it is important to consider the role that SBP hypotension (as well as hypoglycemia, hyperthermia, hyperoxia, and hypocapnia) plays during general anesthesia in young infants in the development of infantile postoperative encephalopathy. Our observations highlight the lack of evidence-based recommendations for the lower limits of adequate SBP and end-tidal carbon dioxide in anesthetized infants.


Subject(s)
Hypoxia, Brain/diagnosis , Monitoring, Intraoperative/methods , Perioperative Care/methods , Postoperative Complications/diagnosis , Female , Follow-Up Studies , Humans , Hypoxia, Brain/etiology , Infant , Infant, Newborn , Male , Postoperative Complications/etiology , Retrospective Studies
19.
Neurology ; 81(21 Suppl 1): S33-40, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24249804

ABSTRACT

OBJECTIVE: Neurofibromatosis (NF)-related benign tumors such as plexiform neurofibromas (PN) and vestibular schwannomas (VS) can cause substantial morbidity. Clinical trials directed at these tumors have become available. Due to differences in disease manifestations and the natural history of NF-related tumors, response criteria used for solid cancers (1-dimensional/RECIST [Response Evaluation Criteria in Solid Tumors] and bidimensional/World Health Organization) have limited applicability. No standardized response criteria for benign NF tumors exist. The goal of the Tumor Measurement Working Group of the REiNS (Response Evaluation in Neurofibromatosis and Schwannomatosis) committee is to propose consensus guidelines for the evaluation of imaging response in clinical trials for NF tumors. METHODS: Currently used imaging endpoints, designs of NF clinical trials, and knowledge of the natural history of NF-related tumors, in particular PN and VS, were reviewed. Consensus recommendations for response evaluation for future studies were developed based on this review and the expertise of group members. RESULTS: MRI with volumetric analysis is recommended to sensitively and reproducibly evaluate changes in tumor size in clinical trials. Volumetric analysis requires adherence to specific imaging recommendations. A 20% volume change was chosen to indicate a decrease or increase in tumor size. Use of these criteria in future trials will enable meaningful comparison of results across studies. CONCLUSIONS: The proposed imaging response evaluation guidelines, along with validated clinical outcome measures, will maximize the ability to identify potentially active agents for patients with NF and benign tumors.


Subject(s)
Clinical Trials as Topic/standards , Diagnostic Imaging/methods , Neurofibroma, Plexiform/therapy , Neurofibromatoses/therapy , Neuroma, Acoustic/therapy , Treatment Outcome , Clinical Trials as Topic/methods , Diagnostic Imaging/standards , Humans , Neurofibroma, Plexiform/diagnosis , Neurofibroma, Plexiform/etiology , Neurofibromatoses/complications , Neurofibromatoses/diagnosis , Neuroma, Acoustic/diagnosis , Neuroma, Acoustic/etiology , Tumor Microenvironment
20.
J Nucl Med ; 54(8): 1237-43, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23801675

ABSTRACT

UNLABELLED: The purpose of this study was to develop a method of registering (18)F-FDG PET with MR permeability images for investigating the correlation of (18)F-FDG uptake, permeability, and cerebral blood volume (CBV) in children with pediatric brain tumors and their relationship with outcome. METHODS: Twenty-four children with brain tumors in a phase II study of bevacizumab and irinotecan underwent brain MR and (18)F-FDG PET within 2 wk. Tumor types included supratentorial high-grade astrocytoma (n = 7), low-grade glioma (n = 9), brain stem glioma (n = 4), medulloblastoma (n = 2), and ependymoma (n = 2). There were 33 cases (pretreatment only [n = 12], posttreatment only [n = 3], and both pretreatment [n = 9] and posttreatment [n = 9]). (18)F-FDG PET images were registered to MR images from the last time point of the T1 perfusion time series using mutual information. Three-dimensional regions of interest (ROIs) drawn on permeability images were automatically transferred to registered PET images. The quality of ROI registration was graded (1, excellent; 2, very good; 3, good; 4, fair; and 5, poor) by 3 independent experts. Spearman rank correlations were used to assess correlation of maximum tumor permeability (Kps(max)), maximum CBV (CBV(max)), and maximum (18)F-FDG uptake normalized to white matter (T/W(max)). Cox proportional hazards models were used to investigate associations of these parameters with progression-free survival (PFS). RESULTS: The quality of ROI registration between PET and MR was good to excellent in 31 of 33 cases. There was no correlation of baseline Kps(max) with CBV(max) (Spearman rank correlation = 0.018 [P = 0.94]) or T/W(max) (Spearman rank correlation = 0.07 [P = 0.76]). Baseline CBV(max) was correlated with T/W(max) (Spearman rank correlation = 0.47 [P = 0.036]). Baseline Kps(max), CBV(max), and T/W(max) were not significantly associated with PFS (P = 0.42, hazard ratio [HR] = 0.97, 95% confidence interval [CI] = 0.90-1.045, and number of events [n(events)] = 15 for Kps(max); P = 0.41, HR = 0.989, 95% CI = 0.963-1.015, and n(events) = 14 for CBV(max); and P = 0.17, HR = 1.49, 95% CI = 0.856-2.378, and n(events) = 15 for T/W(max)). CONCLUSION: (18)F-FDG PET and MR permeability images were successfully registered and compared across a spectrum of pediatric brain tumors. The lack of correlation between metabolism and permeability may be expected because these parameters characterize different molecular processes. The correlation of CBV and tumor metabolism may be related to an association with tumor grade. More patients are needed for a covariate analysis of these parameters and PFS by tumor histology.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Research Report , Adolescent , Brain Neoplasms/pathology , Child , Disease-Free Survival , Female , Humans , Imaging, Three-Dimensional , Male , Neoplasm Grading , Neuroimaging , Permeability , Radionuclide Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...