Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Pediatr Radiol ; 53(13): 2723-2741, 2023 12.
Article in English | MEDLINE | ID: mdl-37864711

ABSTRACT

The Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group includes neuroradiologists, neuro-oncologists, neurosurgeons, radiation oncologists, and clinicians in various additional specialties. This review paper will summarize the imaging recommendations from RAPNO for the six RAPNO publications to date covering pediatric low-grade glioma, pediatric high-grade glioma, medulloblastoma and other leptomeningeal seeding tumors, diffuse intrinsic pontine glioma, ependymoma, and craniopharyngioma.


Subject(s)
Brain Neoplasms , Glioma , Humans , Child , Diagnostic Imaging , Glioma/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy
2.
J Comput Assist Tomogr ; 47(5): 820-832, 2023.
Article in English | MEDLINE | ID: mdl-37707414

ABSTRACT

ABSTRACT: Complications of cancer therapy in children can result in a spectrum of neurologic toxicities that may occur at the initiation of therapy or months to years after treatment. Although childhood cancer remains rare, increasing survival rates mean that more children will be living longer after cancer treatment. Therefore, complications of cancer therapy will most likely occur with increasing frequency.At times, it is very difficult to differentiate between therapeutic complications and other entities such as tumor recurrence, development of secondary malignancy, and infection (among other conditions). Radiologists often play a key role in the diagnosis and evaluation of pediatric patients with malignancies, and thus, awareness of imaging findings of cancer complications and alternative diagnoses is essential in guiding management and avoiding misdiagnosis. The aim of this review article is to illustrate the typical neuroimaging findings of cancer therapy-related toxicities, including both early and late treatment effects, highlighting pearls that may aid in making the appropriate diagnosis.


Subject(s)
Neoplasms , Humans , Child , Neoplasms/complications , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neuroimaging
3.
Lancet Oncol ; 24(3): e133-e143, 2023 03.
Article in English | MEDLINE | ID: mdl-36858729

ABSTRACT

As the immuno-oncology field continues the rapid growth witnessed over the past decade, optimising patient outcomes requires an evolution in the current response-assessment guidelines for phase 2 and 3 immunotherapy clinical trials and clinical care. Additionally, investigational tools-including image analysis of standard-of-care scans (such as CT, magnetic resonance, and PET) with analytics, such as radiomics, functional magnetic resonance agents, and novel molecular-imaging PET agents-offer promising advancements for assessment of immunotherapy. To document current challenges and opportunities and identify next steps in immunotherapy diagnostic imaging, the National Cancer Institute Clinical Imaging Steering Committee convened a meeting with diverse representation among imaging experts and oncologists to generate a comprehensive review of the state of the field.


Subject(s)
Neoplasms , United States , Humans , National Cancer Institute (U.S.) , Immunotherapy , Image Processing, Computer-Assisted , Medical Oncology
4.
Pediatr Blood Cancer ; 70 Suppl 4: e30147, 2023 06.
Article in English | MEDLINE | ID: mdl-36519599

ABSTRACT

Tumors of the central nervous system are the most common solid malignancies in children and the most common cause of pediatric cancer-related mortality. Imaging plays a central role in diagnosis, staging, treatment planning, and response assessment of pediatric brain tumors. However, the substantial variability in brain tumor imaging protocols across institutions leads to variability in patient risk stratification and treatment decisions, and complicates comparisons of clinical trial results. This White Paper provides consensus-based imaging recommendations for evaluating pediatric patients with primary brain tumors. The proposed brain magnetic resonance imaging protocol recommendations balance advancements in imaging techniques with the practicality of deployment across most imaging centers.


Subject(s)
Brain Neoplasms , Surface Plasmon Resonance , Humans , Child , Brain Neoplasms/pathology , Magnetic Resonance Imaging/methods , Central Nervous System/pathology , Brain/pathology
5.
Lancet Oncol ; 23(8): e393-e401, 2022 08.
Article in English | MEDLINE | ID: mdl-35901835

ABSTRACT

Response criteria for paediatric intracranial ependymoma vary historically and across different international cooperative groups. The Response Assessment in the Pediatric Neuro-Oncology (RAPNO) working group, consisting of an international panel of paediatric and adult neuro-oncologists, neuro-radiologists, radiation oncologists, and neurosurgeons, was established to address both the issues and the unique challenges in assessing the response in children with CNS tumours. We established a subcommittee to develop response assessment criteria for paediatric ependymoma. Current practice and literature were reviewed to identify major challenges in assessing the response of paediatric ependymoma to clinical trial therapy. For areas in which data were scarce or unavailable, consensus was reached through an iterative process. RAPNO response assessment recommendations include assessing disease response on the basis of changes in tumour volume, and using event-free survival as a study endpoint for patients entering clinical trials without bulky disease. Our recommendations for response assessment include the use of brain and spine MRI, cerebral spinal fluid cytology, neurological examination, and steroid use. Baseline postoperative imaging to assess for residual tumour should be obtained 24-48 h after surgery. Our consensus recommendations and response definitions should be prospectively validated in clinical trials.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Ependymoma , Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Central Nervous System Neoplasms/pathology , Child , Ependymoma/diagnostic imaging , Ependymoma/therapy , Humans , Magnetic Resonance Imaging
7.
Neuro Oncol ; 23(10): 1777-1788, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33631016

ABSTRACT

BACKGROUND: Pediatric low-grade gliomas (pLGGs) are the most common childhood brain tumor. Progression-free survival (PFS) is much lower than overall survival, emphasizing the need for alternative treatments. Sporadic (without neurofibromatosis type 1) optic pathway and hypothalamic gliomas (OPHGs) are often multiply recurrent and cause significant visual deficits. Recently, there has been a prioritization of functional outcomes. METHODS: We present results from children with recurrent/progressive OPHGs treated on a PBTC (Pediatric Brain Tumor Consortium) phase II trial evaluating efficacy of selumetinib (AZD6244, ARRY-142886) a MEK-1/2 inhibitor. Stratum 4 of PBTC-029 included patients with sporadic recurrent/progressive OPHGs treated with selumetinib at the recommended phase II dose (25mg/m2/dose BID) for a maximum of 26 courses. RESULTS: Twenty-five eligible and evaluable patients were enrolled with a median of 4 (1-11) previous therapies. Six of 25 (24%) had partial response, 14/25 (56%) had stable disease, and 5 (20%) had progressive disease while on treatment. The median treatment courses were 26 (2-26); 14/25 patients completed all 26 courses. Two-year PFS was 78 ± 8.5%. Nineteen of 25 patients were evaluable for visual acuity which improved in 4/19 patients (21%), was stable in 13/19 (68%), and worsened in 2/19 (11%). Five of 19 patients (26%) had improved visual fields and 14/19 (74%) were stable. The most common toxicities were grade 1/2 CPK elevation, anemia, diarrhea, headache, nausea/emesis, fatigue, AST and ALT increase, hypoalbuminemia, and rash. CONCLUSIONS: Selumetinib was tolerable and led to responses and prolonged disease stability in children with recurrent/progressive OPHGs based upon radiographic response, PFS, and visual outcomes.


Subject(s)
Brain Neoplasms , Neurofibromatosis 1 , Optic Nerve Glioma , Benzimidazoles , Brain Neoplasms/drug therapy , Child , Humans , Optic Nerve Glioma/drug therapy
8.
Pediatr Blood Cancer ; 68(4): e28879, 2021 04.
Article in English | MEDLINE | ID: mdl-33405376

ABSTRACT

BACKGROUND: Disruption of cell-cycle regulators is a potential therapeutic target for brain tumors in children and adolescents. The aim of this study was to determine the maximum tolerated dose (MTD) and describe toxicities related to palbociclib, a selective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor in pediatric patients with progressive/refractory brain tumors with intact retinoblastoma protein. METHODS: Palbociclib was administered orally starting at 50 mg/m2 daily for the first 21 days of a 28-day course. Dose escalation was according to the Rolling-6 statistical design in less heavily (stratum I) and heavily pretreated (stratum II) patients, and MTD was determined separately for each group. Pharmacokinetic studies were performed during the first course, and pharmacodynamic studies were conducted to evaluate relationships between drug levels and toxicities. RESULTS: A total of 21 patients were enrolled on stratum I and 14 patients on stratum II. The MTD for both strata was 75 mg/m2 . Palbociclib absorption (mean Tmax between 4.9 and 6.6 h) and elimination (mean half-life between 11.3 and 19.5 h) were assessed. The most common toxicity was myelosuppression. Higher palbociclib exposure was associated with grade 3/4 neutropenia and leukopenia. Dose limiting toxicities included grade 4 neutropenia and grade 3 thrombocytopenia and dehydration. No patients had an objective response to palbociclib therapy. CONCLUSIONS: Palbociclib was safely administered to children and adolescents at a dosage of 75 mg/m2 for 21 consecutive days followed by seven days of rest in both strata. Future studies will establish its optimal utilization in pediatric patients with brain tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Piperazines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use , Adolescent , Adult , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Brain Neoplasms/pathology , Child , Child, Preschool , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Disease Progression , Female , Humans , Male , Piperazines/adverse effects , Piperazines/pharmacokinetics , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Pyridines/adverse effects , Pyridines/pharmacokinetics , Young Adult
9.
Neuro Oncol ; 22(6): 875-885, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32009149

ABSTRACT

BACKGROUND: A Pediatric Brain Tumor Consortium (PBTC) phase I/II trial of veliparib and radiation followed by veliparib and temozolomide (TMZ) was conducted in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG). The objectives were to: (i) estimate the recommended phase II dose (RP2D) of veliparib with concurrent radiation; (ii) evaluate the pharmacokinetic parameters of veliparib during radiation; (iii) evaluate feasibility of intrapatient TMZ dose escalation; (iv) describe toxicities of protocol therapy; and (v) estimate the overall survival distribution compared with historical series. METHODS: Veliparib was given Monday through Friday b.i.d. during radiation followed by a 4-week rest. Patients then received veliparib at 25 mg/m2 b.i.d. and TMZ 135 mg/m2 daily for 5 days every 28 days. Intrapatient dose escalation of TMZ was investigated for patients experiencing minimal toxicity. RESULTS: Sixty-six patients (65 eligible) were enrolled. The RP2D of veliparib was 65 mg/m2 b.i.d. with radiation. Dose-limiting toxicities during radiation with veliparib therapy included: grade 2 intratumoral hemorrhage (n = 1), grade 3 maculopapular rash (n = 2), and grade 3 nervous system disorder (generalized neurologic deterioration) (n = 1). Intrapatient TMZ dose escalation during maintenance was not tolerated. Following a planned interim analysis, it was concluded that this treatment did not show a survival benefit compared with PBTC historical controls, and accrual was stopped for futility. The 1- and 2-year overall survival rates were 37.2% (SE 7%) and 5.3% (SE 3%), respectively. CONCLUSION: Addition of veliparib to radiation followed by TMZ and veliparib was tolerated but did not improve survival for patients with newly diagnosed DIPG. TRIAL REGISTRATION: NCT01514201.


Subject(s)
Brain Neoplasms , Brain Stem Neoplasms , Glioma , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzimidazoles/adverse effects , Brain Neoplasms/drug therapy , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/radiotherapy , Child , Humans , Temozolomide/therapeutic use
10.
Radiol Clin North Am ; 57(6): 1163-1175, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31582042

ABSTRACT

Primary brain tumors are the most common solid malignancy of childhood and constitute the most common cause of cancer-related death in children. It is important for the radiologist to understand the differences between pediatric and adult brain tumors. For instance, tumor type varies significantly with age; many histologic subtypes occur exclusively in childhood. An anatomic approach to pediatric brain tumors helps narrow the differential diagnosis; however, information from this approach must be considered in conjunction with recent advances in molecular subtyping of these tumors. This article emphasizes relevant clinical, molecular, and imaging features that are unique to pediatric brain tumors.


Subject(s)
Brain Neoplasms/diagnostic imaging , Diagnostic Imaging/methods , Brain/diagnostic imaging , Child , Child, Preschool , Female , Humans , Infant , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Neuroimaging/methods , Tomography, X-Ray Computed
11.
Neuroimaging Clin N Am ; 29(2): 271-289, 2019 May.
Article in English | MEDLINE | ID: mdl-30926117

ABSTRACT

Pediatric headache is a common problem, with various underlying causes. Appropriate patient selection for neuroimaging is necessary to optimize the clinical evaluation. This review aims to provide a focused discussion of the clinical evaluation of children with headache, including published guidelines pertaining to neuroimaging, technical considerations for neuroimaging, and tailoring of examinations for specific clinical entities known to cause pediatric headache.


Subject(s)
Brain/diagnostic imaging , Brain/physiopathology , Headache/diagnosis , Headache/physiopathology , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Child , Humans , Neuroimaging/methods
12.
J Neurooncol ; 143(1): 79-86, 2019 May.
Article in English | MEDLINE | ID: mdl-30810873

ABSTRACT

BACKGROUND AND PURPOSE: Baseline diffusion or apparent diffusion coefficient (ADC) characteristics have been shown to predict outcome related to DIPG, but the predictive value of post-radiation ADC is less well understood. ADC parametric mapping (FDM) was used to measure radiation-related changes in ADC and compared these metrics to baseline ADC in predicting progression-free survival and overall survival using a large multi-center cohort of DIPG patients (Pediatric Brain Tumor Consortium-PBTC). MATERIALS AND METHODS: MR studies at baseline and post-RT in 95 DIPG patients were obtained and serial quantitative ADC parametric maps were generated from diffusion-weighted imaging based on T2/FLAIR and enhancement regions of interest (ROIs). Metrics assessed included total voxels with: increase in ADC (iADC); decrease in ADC (dADC), no change in ADC (nADC), fraction of voxels with increased ADC (fiADC), fraction of voxels with decreased ADC (fdADC), and the ratio of fiADC and fdADC (fDM Ratio). RESULTS: A total of 72 patients were included in the final analysis. Tumors with higher fiADC between baseline and the first RT time point showed a trend toward shorter PFS with a hazard ratio of 6.44 (CI 0.79, 52.79, p = 0.083). In contrast, tumors with higher log mean ADC at baseline had longer PFS, with a hazard ratio of 0.27 (CI 0.09, 0.82, p = 0.022). There was no significant association between fDM derived metrics and overall survival. CONCLUSIONS: Baseline ADC values are a stronger predictor of outcome compared to radiation related ADC changes in pediatric DIPG. We show the feasibility of employing parametric mapping techniques in multi-center studies to quantitate spatially heterogeneous treatment response in pediatric tumors, including DIPG.


Subject(s)
Brain Stem Neoplasms/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Glioma/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Adolescent , Algorithms , Brain Stem Neoplasms/mortality , Brain Stem Neoplasms/radiotherapy , Child , Diffusion Magnetic Resonance Imaging/methods , Feasibility Studies , Female , Glioma/mortality , Glioma/radiotherapy , Humans , Male , Pons , Retrospective Studies , Spatio-Temporal Analysis , Survival Analysis , Treatment Outcome
13.
J Nucl Med ; 60(5): 677-682, 2019 05.
Article in English | MEDLINE | ID: mdl-30530829

ABSTRACT

The purpose of this study was to assess image quality and quantitative brain PET across a multicenter consortium. Methods: All academic centers and children's hospitals in the Pediatric Brain Tumor Consortium (PBTC) scanned a phantom developed by the Society of Nuclear Medicine and Molecular Imaging Clinical Trials Network (SNMMI CTN) for the validation of brain PET studies associated with clinical trials. The phantom comprises 2 separate, fillable sections: a resolution/uniformity section and a clinical simulation section. The resolution/uniformity section is a cylinder 12.7 cm long and 20 cm in diameter; spatial resolution is evaluated subjectively with 2 sets of rods (hot and cold) of varying diameter (4.0, 5.0, 6.25, 7.81, 9.67, and 12.2 mm) and spacing (twice the rod diameter). The clinical simulation section simulates a transverse section of midbrain with ventricles and gray and white matter compartments. If properly filled, hot rods have a 4:1 target-to-background ratio, and gray-to-white matter sections have a 4:1 ratio. Uniformity and image quality were evaluated using the SUV in a small volume of interest as well as subjectively by 2 independent observers using a 4-point scale. Results: Eleven PBTC sites scanned the phantom on 13 PET scanners. The phantom's complexity led to suboptimal filling, particularly of the hot rod section, in 5 sites. The SUV in the uniformity section was within 10% of unity on only 5 of 13 scanners, although 12 of 13 were subjectively judged to have very good to excellent uniformity. Four of 6 hot rods were discernable by all 13 scanners, whereas 3 of 6 cold rods were discernable by only 5 scanners. Four of 13 scanners had a gray-to-white matter ratio between 3.0 and 5.0 (4.0 is truth); however, 11 of 13 scanners were subjectively judged to have very good or excellent image quality. Conclusion: Eleven sites were able to image a powerful phantom developed by the SNMMI CTN that evaluated image uniformity, spatial resolution, and image quality of brain PET. There was considerable variation in PET data across the PBTC sites, possibly resulting from variations in scanning across the sites due to challenges in filling the phantom.


Subject(s)
Brain Neoplasms/diagnostic imaging , Clinical Trials as Topic , Intersectoral Collaboration , Nuclear Medicine , Phantoms, Imaging , Positron-Emission Tomography/instrumentation , Societies, Medical , Child , Humans , Image Processing, Computer-Assisted
14.
Int J Radiat Oncol Biol Phys ; 101(1): 152-168, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29619963

ABSTRACT

PURPOSE: Proton therapy can allow for superior avoidance of normal tissues. A widespread consensus has been reached that proton therapy should be used for patients with curable pediatric brain tumor to avoid critical central nervous system structures. Brainstem necrosis is a potentially devastating, but rare, complication of radiation. Recent reports of brainstem necrosis after proton therapy have raised concerns over the potential biological differences among radiation modalities. We have summarized findings from the National Cancer Institute Workshop on Proton Therapy for Children convened in May 2016 to examine brainstem injury. METHODS AND MATERIALS: Twenty-seven physicians, physicists, and researchers from 17 institutions with expertise met to discuss this issue. The definition of brainstem injury, imaging of this entity, clinical experience with photons and photons, and potential biological differences among these radiation modalities were thoroughly discussed and reviewed. The 3 largest US pediatric proton therapy centers collectively summarized the incidence of symptomatic brainstem injury and physics details (planning, dosimetry, delivery) for 671 children with focal posterior fossa tumors treated with protons from 2006 to 2016. RESULTS: The average rate of symptomatic brainstem toxicity from the 3 largest US pediatric proton centers was 2.38%. The actuarial rate of grade ≥2 brainstem toxicity was successfully reduced from 12.7% to 0% at 1 center after adopting modified radiation guidelines. Guidelines for treatment planning and current consensus brainstem constraints for proton therapy are presented. The current knowledge regarding linear energy transfer (LET) and its relationship to relative biological effectiveness (RBE) are defined. We review the current state of LET-based planning. CONCLUSIONS: Brainstem injury is a rare complication of radiation therapy for both photons and protons. Substantial dosimetric data have been collected for brainstem injury after proton therapy, and established guidelines to allow for safe delivery of proton radiation have been defined. Increased capability exists to incorporate LET optimization; however, further research is needed to fully explore the capabilities of LET- and RBE-based planning.


Subject(s)
Brain Stem/pathology , Brain Stem/radiation effects , Infratentorial Neoplasms/radiotherapy , Proton Therapy/adverse effects , Radiation Injuries/epidemiology , Brain Stem/diagnostic imaging , Cancer Care Facilities/statistics & numerical data , Child , Florida , Humans , Infratentorial Neoplasms/diagnostic imaging , Infratentorial Neoplasms/pathology , Linear Energy Transfer , Massachusetts , National Cancer Institute (U.S.) , Necrosis/diagnostic imaging , Necrosis/epidemiology , Necrosis/etiology , Necrosis/prevention & control , Photons/adverse effects , Practice Guidelines as Topic , Proton Therapy/methods , Proton Therapy/standards , Radiation Injuries/diagnostic imaging , Radiation Injuries/prevention & control , Radiotherapy, Intensity-Modulated , Relative Biological Effectiveness , Texas , Uncertainty , United States
15.
Pediatr Blood Cancer ; 65(2)2018 Feb.
Article in English | MEDLINE | ID: mdl-29090526

ABSTRACT

BACKGROUND: We conducted a phase II study of oral capecitabine rapidly disintegrating tablets given concurrently with radiation therapy (RT) to assess progression-free survival (PFS) in children with newly diagnosed diffuse intrinsic pontine gliomas (DIPG). PATIENTS AND METHODS: Children 3-17 years with newly diagnosed DIPG were eligible. Capecitabine, 650 mg/m2 /dose BID (maximum tolerated dose [MTD] in children with concurrent radiation), was administered for 9 weeks starting the first day of RT. Following a 2-week break, three courses of capecitabine, 1,250 mg/m2 /dose BID for 14 days followed by a 7-day rest, were administered. As prospectively designed, 10 evaluable patients treated at the MTD on the phase I trial were included in the phase II analyses. The design was based on comparison of the PFS distribution to a contemporary historical control (n = 140) with 90% power to detect a 15% absolute improvement in the 1-year PFS with a type-1 error rate, α = 0.10. RESULTS: Forty-four patients were evaluable for the phase II objectives. Capecitabine and RT was well tolerated with low-grade palmar plantar erythrodyesthesia, increased alanine aminotransferase, cytopenias, and vomiting the most commonly reported toxicities. Findings were significant for earlier progression with 1-year PFS of 7.21% (SE = 3.47%) in the capecitabine-treated cohort versus 15.59% (SE = 3.05%) in the historical control (P = 0.007), but there was no difference for overall survival (OS) distributions (P = 0.30). Tumor enhancement at diagnosis was associated with shorter PFS and OS. Capecitabine was rapidly absorbed and converted to its metabolites. CONCLUSION: Capecitabine did not improve the outcome for children with newly diagnosed DIPG.


Subject(s)
Brain Stem Neoplasms/therapy , Capecitabine/administration & dosage , Chemoradiotherapy , Glioma/therapy , Administration, Oral , Adolescent , Brain Stem Neoplasms/diagnosis , Child , Child, Preschool , Female , Follow-Up Studies , Glioma/diagnosis , Humans , Male , Prospective Studies , Tablets
16.
J Nucl Med ; 58(8): 1264-1269, 2017 08.
Article in English | MEDLINE | ID: mdl-28360212

ABSTRACT

The purpose of this study was to describe baseline 18F-FDG PET voxel characteristics in pediatric diffuse intrinsic pontine glioma (DIPG) and to correlate these metrics with baseline MRI apparent diffusion coefficient (ADC) histogram metrics, progression-free survival (PFS), and overall survival. Methods: Baseline brain 18F-FDG PET and MRI scans were obtained in 33 children from Pediatric Brain Tumor Consortium clinical DIPG trials. 18F-FDG PET images, postgadolinium MR images, and ADC MR images were registered to baseline fluid attenuation inversion recovery MR images. Three-dimensional regions of interest on fluid attenuation inversion recovery MR images and postgadolinium MR images and 18F-FDG PET and MR ADC histograms were generated. Metrics evaluated included peak number, skewness, and kurtosis. Correlation between PET and MR ADC histogram metrics was evaluated. PET pixel values within the region of interest for each tumor were plotted against MR ADC values. The association of these imaging markers with survival was described. Results: PET histograms were almost always unimodal (94%, vs. 6% bimodal). None of the PET histogram parameters (skewness or kurtosis) had a significant association with PFS, although a higher PET postgadolinium skewness tended toward a less favorable PFS (hazard ratio, 3.48; 95% confidence interval [CI], 0.75-16.28 [P = 0.11]). There was a significant association between higher MR ADC postgadolinium skewness and shorter PFS (hazard ratio, 2.56; 95% CI, 1.11-5.91 [P = 0.028]), and there was the suggestion that this also led to shorter overall survival (hazard ratio, 2.18; 95% CI, 0.95-5.04 [P = 0.067]). Higher MR ADC postgadolinium kurtosis tended toward shorter PFS (hazard ratio, 1.30; 95% CI, 0.98-1.74 [P = 0.073]). PET and MR ADC pixel values were negatively correlated using the Pearson correlation coefficient. Further, the level of PET and MR ADC correlation was significantly positively associated with PFS; tumors with higher values of ADC-PET correlation had more favorable PFS (hazard ratio, 0.17; 95% CI, 0.03-0.89 [P = 0.036]), suggesting that a higher level of negative ADC-PET correlation leads to less favorable PFS. A more significant negative correlation may indicate higher-grade elements within the tumor leading to poorer outcomes. Conclusion:18F-FDG PET and MR ADC histogram metrics in pediatric DIPG demonstrate different characteristics with often a negative correlation between PET and MR ADC pixel values. A higher negative correlation is associated with a worse PFS, which may indicate higher-grade elements within the tumor.


Subject(s)
Brain Stem Neoplasms/diagnostic imaging , Fluorodeoxyglucose F18 , Glioma/diagnostic imaging , Magnetic Resonance Imaging , Positron-Emission Tomography , Adolescent , Brain Stem Neoplasms/metabolism , Child , Child, Preschool , Diffusion , Disease-Free Survival , Female , Glioma/metabolism , Humans , Male , Retrospective Studies , Young Adult
17.
J Neurooncol ; 129(3): 443-451, 2016 09.
Article in English | MEDLINE | ID: mdl-27350411

ABSTRACT

Telomerase activation is critical in many cancers including central nervous system (CNS) tumors. Imetelstat is an oligonucleotide that binds to the template region of the RNA component of telomerase, inhibiting its enzymatic activity. We conducted an investigator-sponsored molecular biology (MB) and phase II study to estimate inhibition of tumor telomerase activity and sustained responses by imetelstat in children with recurrent CNS malignancies. In the MB study, patients with recurrent medulloblastoma, high-grade glioma (HGG) or ependymoma undergoing resection received one dose of imetelstat as a 2-h intravenous infusion at 285 mg/m(2), 12-24 h before surgery. Telomerase activity was evaluated in fresh tumor from surgery. Post-surgery and in the phase II study, patients received imetelstat IV (days 1 and 8 q21-days) at 285 mg/m(2). Imetelstat pharmacokinetic and pharmacodynamic studies were performed. Of two evaluable patients on the MB trial, intratumoral telomerase activity was inhibited by 95 % compared to baseline archival tissue in one patient and was inevaluable in one patient. Forty-two patients (40 evaluable for toxicity) were enrolled: 9 medulloblastomas, 18 HGG, 4 ependymomas, 9 diffuse intrinsic pontine gliomas. Most common grade 3/4 toxicities included thrombocytopenia (32.5 %), lymphopenia (17.5 %), neutropenia (12.5 %), ALT (7.5 %) and AST (5 %) elevation. Two patients died of intratumoral hemorrhage secondary to thrombocytopenia leading to premature study closure. No objective responses were observed. Telomerase inhibition was observed in peripheral blood mononuclear cells (PBMCs) for at least 8 days. Imetelstat demonstrated intratumoral and PBMC target inhibition; the regimen proved too toxic in children with recurrent CNS tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Central Nervous System Neoplasms/drug therapy , Glioma/drug therapy , Indoles/therapeutic use , Niacinamide/analogs & derivatives , Telomerase/metabolism , Adolescent , Alanine Transaminase/metabolism , Blood Cell Count , Central Nervous System Neoplasms/surgery , Child , Child, Preschool , Female , Glioma/surgery , Humans , Lymphocytes/drug effects , Lymphocytes/pathology , Male , Neoplasm Recurrence, Local/drug therapy , Neutrophils/drug effects , Neutrophils/pathology , Niacinamide/therapeutic use , Oligonucleotides , Telomerase/genetics , Time Factors , Treatment Outcome , Young Adult
18.
Neuro Oncol ; 18(5): 725-34, 2016 05.
Article in English | MEDLINE | ID: mdl-26487690

ABSTRACT

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is associated with poor survival regardless of therapy. We used volumetric apparent diffusion coefficient (ADC) histogram metrics to determine associations with progression-free survival (PFS) and overall survival (OS) at baseline and after radiation therapy (RT). METHODS: Baseline and post-RT quantitative ADC histograms were generated from fluid-attenuated inversion recovery (FLAIR) images and enhancement regions of interest. Metrics assessed included number of peaks (ie, unimodal or bimodal), mean and median ADC, standard deviation, mode, skewness, and kurtosis. RESULTS: Based on FLAIR images, the majority of tumors had unimodal peaks with significantly shorter average survival. Pre-RT FLAIR mean, mode, and median values were significantly associated with decreased risk of progression; higher pre-RT ADC values had longer PFS on average. Pre-RT FLAIR skewness and standard deviation were significantly associated with increased risk of progression; higher pre-RT FLAIR skewness and standard deviation had shorter PFS. Nonenhancing tumors at baseline showed higher ADC FLAIR mean values, lower kurtosis, and higher PFS. For enhancing tumors at baseline, bimodal enhancement histograms had much worse PFS and OS than unimodal cases and significantly lower mean peak values. Enhancement in tumors only after RT led to significantly shorter PFS and OS than in patients with baseline or no baseline enhancement. CONCLUSIONS: ADC histogram metrics in DIPG demonstrate significant correlations between diffusion metrics and survival, with lower diffusion values (increased cellularity), increased skewness, and enhancement associated with shorter survival, requiring future investigations in large DIPG clinical trials.


Subject(s)
Brain Stem Neoplasms/pathology , Glioma/pathology , Image Interpretation, Computer-Assisted/methods , Brain Stem Neoplasms/mortality , Brain Stem Neoplasms/radiotherapy , Child , Diffusion Magnetic Resonance Imaging , Disease Progression , Disease-Free Survival , Female , Glioma/mortality , Glioma/radiotherapy , Humans , Kaplan-Meier Estimate , Male , Prognosis
20.
Childs Nerv Syst ; 31(9): 1433-45, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26188774

ABSTRACT

BACKGROUND: Cediranib (AZD2171), an oral pan-vascular endothelial growth factor (VEGF) inhibitor, was evaluated in this phase I study to determine its toxicity profile, dose-limiting toxicities (DLTs), maximum-tolerated dose (MTD), pharmacokinetics, and pharmacodynamics in children and adolescents with recurrent or refractory primary central nervous system (CNS) tumors. METHODS: Children and adolescents <22 years were enrolled into one of two strata: stratum I­those not receiving enzyme-inducing anticonvulsant drugs (EIACD) and stratum II­those receiving EIACDs. Dose-level selection was based on the continual reassessment method (CRM). RESULTS: Thirty-six eligible patients with median age of 12.7 years (range, 5.4-21.7 years) in stratum I (24 males) and 12 patients (7 males) in stratum II with median age of 13.4 years (range, 8.9-19.5 years) were initially assessed over a 4-week DLT evaluation period, modified to 6 weeks during the study. An MTD of 32 mg/m(2)/day was declared; however, excessive toxicities (transaminitis, proteinuria, diarrhea, hemorrhage, palmer-planter syndrome, reversible posterior leukoencephalopathy) in the expansion cohort treated at this dose suggested that it might not be tolerated over a longer time period. An expansion cohort at 20 mg/m(2)/day also demonstrated poor longer-term tolerability. Diffusion and perfusion MRI and PET imaging variables as well as biomarker analysis were performed and correlated with outcome. At 20 mg/m(2)/day, the median plasma area under the concentration-time curve at steady state was lower than that observed in adults at similar dosages. CONCLUSIONS: While the MTD of once daily oral cediranib in children with recurrent or progressive CNS tumors was initially defined as 32 mg/m(2)/day, this dose and 20 mg/m(2)/day were not considered tolerable over a protracted time period.


Subject(s)
Central Nervous System Neoplasms/drug therapy , Neoplasm Recurrence, Local/drug therapy , Protein Kinase Inhibitors/therapeutic use , Quinazolines/therapeutic use , Administration, Oral , Adolescent , Biological Availability , Child , Child, Preschool , Dose-Response Relationship, Drug , Female , Humans , Infant , Magnetic Resonance Imaging , Male , Positron-Emission Tomography , Statistics as Topic , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...