Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 19(12): e1011854, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38128049

ABSTRACT

Transmission of trypanosomatids to their mammalian hosts requires a complex series of developmental transitions in their insect vectors, including stable attachment to an insect tissue. While there are many ultrastructural descriptions of attached cells, we know little about the signaling events and molecular mechanisms involved in this process. Each trypanosomatid species attaches to a specific tissue in the insect at a particular stage of its life cycle. Attachment is mediated by the flagellum, which is modified to accommodate a filament-rich plaque within an expanded region of the flagellar membrane. Attachment immediately precedes differentiation to the mammal-infectious stage and in some cases a direct mechanistic link has been demonstrated. In this review, we summarize the current state of knowledge of trypanosomatid attachment in insects, including structure, function, signaling, candidate molecules, and changes in gene expression. We also highlight remaining questions about this process and how the field is poised to address them through modern approaches.


Subject(s)
Trypanosomatina , Animals , Trypanosomatina/genetics , Insecta , Flagella/metabolism , Mammals
2.
J Extracell Vesicles ; 12(1): e12298, 2023 01.
Article in English | MEDLINE | ID: mdl-36604533

ABSTRACT

Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved.


Subject(s)
Extracellular Vesicles , Helminths , Animals , Humans , Extracellular Vesicles/physiology , Reproducibility of Results , Mammals
3.
Parasit Vectors ; 15(1): 469, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36522779

ABSTRACT

BACKGROUND: Canine heartworm is a widespread and potentially fatal mosquito-borne disease caused by infections with the parasitic nematode, Dirofilaria immitis. We have previously shown that systemic activation of the Toll immune pathway via silencing of the negative regulator Cactus in Aedes aegypti blocks parasite development in the Malpighian tubules (MT), the mosquito renal organ. However, it was not established whether the MT were directly responding to Toll activation or were alternatively responding to upregulated proteins or other changes to the hemolymph driven by other tissues. Distinguishing these possibilities is crucial for developing more precise strategies to block D. immitis while potentially avoiding the fitness cost to the mosquito associated with Cactus silencing. METHODS: This study defines the transcriptional response of the MT and changes to the hemolymph proteome of Ae. aegypti after systemic Toll activation via intra-thoracic injection of double-stranded Cactus (dsCactus) RNA. RESULTS: Malpighian tubules significantly increased expression of the Toll pathway target genes that significantly overlapped expression changes occurring in whole mosquitoes. A significant overlap between the transcriptional response of the MT and proteins upregulated in the hemolymph was also observed. CONCLUSIONS: Our data show that MT are capable of RNA interference-mediated gene silencing and directly respond to dsCactus treatment by upregulating targets of the canonical Toll pathway. Although not definitive, the strong correspondence between the MT transcriptional response and the hemolymph proteomic responses provides evidence that the MT may contribute to mosquito humoral immunity.


Subject(s)
Aedes , Dirofilaria immitis , Animals , Dogs , Aedes/physiology , Malpighian Tubules/metabolism , Malpighian Tubules/parasitology , Proteomics , RNA Interference
4.
Parasit Vectors ; 14(1): 30, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413579

ABSTRACT

BACKGROUND: Mosquitoes transmit filarial nematodes to both human and animal hosts, with worldwide health and economic consequences. Transmission to a vertebrate host requires that ingested microfilariae develop into infective third-stage larvae capable of emerging from the mosquito proboscis onto the skin of the host during blood-feeding. Determining the number of microfilariae that successfully develop to infective third-stage larvae in the mosquito host is key to understanding parasite transmission potential and to developing new strategies to block these worms in their vector. METHODS: We developed a novel method to efficiently assess the number of infective third-stage filarial larvae that emerge from experimentally infected mosquitoes. Following infection, individual mosquitoes were placed in wells of a multi-well culture plate and warmed to 37 °C to stimulate parasite emergence. Aedes aegypti infected with Dirofilaria immitis were used to determine infection conditions and assay timing. The assay was also tested with Brugia malayi-infected Ae. aegypti. RESULTS: Approximately 30% of Ae. aegypti infected with D. immitis and 50% of those infected with B. malayi produced emerging third-stage larvae. Once D. immitis third-stage larvae emerged at 13 days post infection, the proportion of mosquitoes producing them and the number produced per mosquito remained stable until at least day 21. The prevalence and intensity of emerging third-stage B. malayi were similar on days 12-14 post infection. Increased uptake of D. immitis microfilariae increased the fitness cost to the mosquito but did not increase the number of emerging third-stage larvae. CONCLUSIONS: We provide a new assay with an associated set of infection conditions that will facilitate assessment of the filarial transmission potential of mosquito vectors and promote preparation of uniformly infectious third-stage larvae for functional assays. The ability to quantify infection outcome will facilitate analyses of molecular interactions between vectors and filariae, ultimately allowing for the establishment of novel methods to block disease transmission.


Subject(s)
Aedes/parasitology , Biological Assay/methods , Brugia malayi/physiology , Dirofilaria immitis/physiology , Larva/physiology , Mosquito Vectors/parasitology , Animals , Brugia malayi/isolation & purification , Dirofilaria immitis/isolation & purification , Dirofilariasis/parasitology , Dirofilariasis/transmission , Microfilariae/physiology
5.
PLoS Pathog ; 16(10): e1008985, 2020 10.
Article in English | MEDLINE | ID: mdl-33045027

ABSTRACT

The arthropod melanization immune response is activated by extracellular protease cascades predominantly comprised of CLIP-domain serine proteases (CLIP-SPs) and serine protease homologs (CLIP-SPHs). In the malaria vector, Anopheles gambiae, the CLIP-SPHs SPCLIP1, CLIPA8, and CLIPA28 form the core of a hierarchical cascade downstream of mosquito complement that is required for microbial melanization. However, our understanding of the regulatory relationship of the CLIP-SPH cascade with the catalytic CLIP-SPs driving melanization is incomplete. Here, we report on the development of a novel screen to identify melanization pathway components based on the quantitation of melanotic mosquito excreta, eliminating the need for microdissections or hemolymph enzymatic assays. Using this screen, we identified CLIPC9 and subsequent functional analyses established that this protease is essential for the melanization of both Escherichia coli and the rodent malaria parasite Plasmodium berghei. Mechanistically, septic infection with E. coli promotes CLIPC9 cleavage and both full-length and cleaved CLIPC9 localize to this bacterium in a CLIPA8-dependent manner. The steady state level of CLIPC9 in the hemolymph is regulated by thioester-containing protein 1 (TEP1), suggesting it functions downstream of mosquito complement. In support, CLIPC9 cleavage is inhibited following SPCLIP1, CLIPA8, and CLIPA28 knockdown positioning it downstream of the CLIP-SPH cascade. Moreover, like CLIPA8 and CLIPA28, CLIPC9 processing is negatively regulated by serine protease inhibitor 2 (SRPN2). This report demonstrates how our novel excretion-based approach can be utilized to dissect the complex protease networks regulating mosquito melanization. Collectively, our findings establish that CLIPC9 is required for microbial melanization in An. gambiae and shed light on how the CLIP-SPH cascade regulates this potent immune response.


Subject(s)
Anopheles/parasitology , Insect Proteins/metabolism , Malaria/parasitology , Melanins/metabolism , Mosquito Vectors/parasitology , Serine Proteases/metabolism , Serine/metabolism , Animals , Anopheles/immunology , Insect Proteins/genetics , Malaria/immunology , Malaria/metabolism , Malaria/pathology , Mice , Plasmodium berghei/immunology , Plasmodium berghei/isolation & purification
6.
Vet Parasitol ; 282: 109100, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32460109

ABSTRACT

Dirofilaria immitis is the globally distributed agent of heartworm disease. Infection in canines causes debilitating disease that can be fatal if left untreated. Macrocyclic lactones can prevent heartworm disease in dogs, cats and ferrets by killing larvae before they develop into adult worms in the pulmonary artery. However, administration of prophylactic drugs to wild canids to prevent D. immitis infection is not feasible. Furthermore, a vaccine against heartworm is currently unavailable and drug resistant D. immitis have been identified, highlighting the need for new strategies to prevent parasite transmission. We recently established a method to block development of emerging third-stage larvae (eL3) from the mosquito Aedes aegypti by over-activating the Toll pathway, one of the major innate immune signaling pathways in mosquitoes. Our previous study used a drug-sensitive strain of D. immitis and it remains unknown if the strategy is effective against different D. immitis genotypes and, more importantly, if it would work against drug-resistant genotypes. The purpose of this study was to determine whether Toll pathway activation is capable of blocking eL3 development of D. immitis strains that are resistant to macrocyclic lactones. We infected mosquitoes with two independent strains of D. immitis previously confirmed as being resistant to macrocyclic lactones, and then activated Toll signaling by RNAi-mediated silencing of the pathway inhibitor, IκB/Cactus, and quantitatively measured eL3 development. Similar to the drug-sensitive strain, eL3 were strongly reduced by Toll activation in both drug-resistant strains. Furthermore, similar to the drug-sensitive strain, the reduction of eL3 in both drug-resistant strains suggests a defect in larval invasion of, or development in, the Malpighian tubules - the organ in the mosquito to which microfilariae migrate after ingestion and where the larvae undergo several developmental molts. In summary, Toll pathway activation blocks the development of three distinct D. immitis genotypes, including two different drug-resistant genotypes. If this strategy can be applied to heartworm vectors in the field, it may help reduce the spread of disease and is not predicted to favor the spread of drug resistance.


Subject(s)
Aedes/parasitology , Dirofilaria immitis/growth & development , Filaricides/pharmacology , Mosquito Vectors/parasitology , Signal Transduction/drug effects , Aedes/immunology , Animals , Dirofilaria immitis/drug effects , Drug Resistance , Insect Proteins/genetics , Insect Proteins/immunology , Larva/drug effects , Larva/growth & development , Mosquito Vectors/immunology
7.
Proc Natl Acad Sci U S A ; 117(7): 3711-3717, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32015105

ABSTRACT

Mosquito-borne helminth infections are responsible for a significant worldwide disease burden in both humans and animals. Accordingly, development of novel strategies to reduce disease transmission by targeting these pathogens in the vector are of paramount importance. We found that a strain of Aedes aegypti that is refractory to infection by Dirofilaria immitis, the agent of canine heartworm disease, mounts a stronger immune response during infection than does a susceptible strain. Moreover, activation of the Toll immune signaling pathway in the susceptible strain arrests larval development of the parasite, thereby decreasing the number of transmission-stage larvae. Notably, this strategy also blocks transmission-stage Brugia malayi, an agent of human lymphatic filariasis. Our data show that mosquito immunity can play a pivotal role in restricting filarial nematode development and suggest that genetically engineering mosquitoes with enhanced immunity will help reduce pathogen transmission.


Subject(s)
Aedes/immunology , Aedes/parasitology , Dirofilaria immitis/growth & development , Mosquito Vectors/immunology , Mosquito Vectors/parasitology , Aedes/genetics , Animals , Insect Proteins/genetics , Insect Proteins/immunology , Larva/growth & development , Mosquito Vectors/genetics
8.
Sci Rep ; 9(1): 15191, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31645596

ABSTRACT

Malaria, the world's most devastating parasitic disease, is transmitted between humans by mosquitoes of the Anopheles genus. An. gambiae is the principal malaria vector in Sub-Saharan Africa. The C-type lectins CTL4 and CTLMA2 cooperatively influence Plasmodium infection in the malaria vector Anopheles. Here we report the purification and biochemical characterization of CTL4 and CTLMA2 from An. gambiae and An. albimanus. CTL4 and CTLMA2 are known to form a disulfide-bridged heterodimer via an N-terminal tri-cysteine CXCXC motif. We demonstrate in vitro that CTL4 and CTLMA2 intermolecular disulfide formation is promiscuous within this motif. Furthermore, CTL4 and CTLMA2 form higher oligomeric states at physiological pH. Both lectins bind specific sugars, including glycosaminoglycan motifs with ß1-3/ß1-4 linkages between glucose, galactose and their respective hexosamines. Small-angle x-ray scattering data supports a compact heterodimer between the CTL domains. Recombinant CTL4/CTLMA2 is found to function in vivo, reversing the enhancement of phenol oxidase activity in dsCTL4-treated mosquitoes. We propose these molecular features underline a common function for CTL4/CTLMA2 in mosquitoes, with species and strain-specific variation in degrees of activity in response to Plasmodium infection.


Subject(s)
Anopheles/metabolism , Enzyme Inhibitors/pharmacology , Insect Proteins/chemistry , Insect Proteins/metabolism , Lectins, C-Type/chemistry , Lectins, C-Type/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Polysaccharides/metabolism , Amino Acid Sequence , Animals , Calcium/metabolism , Conserved Sequence , Escherichia coli/metabolism , Monophenol Monooxygenase/metabolism , Recombinant Proteins/metabolism , Solutions
9.
PLoS Negl Trop Dis ; 13(7): e0007570, 2019 07.
Article in English | MEDLINE | ID: mdl-31356610

ABSTRACT

Kinetoplastids are a group of parasites that includes several medically-important species. These human-infective species are transmitted by insect vectors in which the parasites undergo specific developmental transformations. For each species, this includes a stage in which parasites adhere to insect tissue via a hemidesmosome-like structure. Although this structure has been described morphologically, it has never been molecularly characterized. We are using Crithidia fasciculata, an insect parasite that produces large numbers of adherent parasites inside its mosquito host, as a model kinetoplastid to investigate both the mechanism of adherence and the signals required for differentiation to an adherent form. An advantage of C. fasciculata is that adherent parasites can be generated both in vitro, allowing a direct comparison to cultured swimming forms, as well as in vivo within the mosquito. Using RNAseq, we identify genes associated with adherence in C. fasciculata. As almost all of these genes have orthologs in other kinetoplastid species, our findings may reveal shared mechanisms of adherence, allowing investigation of a crucial step in parasite development and disease transmission. In addition, dual-RNAseq allowed us to explore the interaction between the parasites and the mosquito. Although the infection is well-tolerated, anti-microbial peptides and other components of the mosquito innate immune system are upregulated. Our findings indicate that C. fasciculata is a powerful model system for probing kinetoplastid-insect interactions.


Subject(s)
Aedes/parasitology , Crithidia fasciculata/genetics , Genes, Protozoan , Aedes/anatomy & histology , Animals , Cell Adhesion/genetics , Cell Adhesion/physiology , Crithidia fasciculata/growth & development , Crithidia fasciculata/physiology , Female , Gene Expression Regulation , Host-Parasite Interactions , Male , RNA, Protozoan , Sequence Analysis, RNA , Signal Transduction
10.
PLoS One ; 14(4): e0214753, 2019.
Article in English | MEDLINE | ID: mdl-30958840

ABSTRACT

The complement-like pathway of the African malaria mosquito Anopheles gambiae provides protection against infection by diverse pathogens. A functional requirement for a core set of proteins during infections by rodent and human malaria parasites, bacteria, and fungi suggests a similar mechanism operates against different pathogens. However, the extent to which the molecular mechanisms are conserved is unknown. In this study we probed the biochemical responses of complement-like pathway to challenge by the Gram-positive bacterium Staphyloccocus aureus. Western blot analysis of the hemolymph revealed that S. aureus challenge activates a TEP1 convertase-like activity and promotes the depletion of the protein SPCLIP1. S. aureus challenge did not lead to an apparent change in the abundance of the LRIM1/APL1C complex compared to challenge by the Gram-negative bacterium, Escherichia coli. Following up on this observation using a panel of LRIM1 and APL1C antibodies, we found that E. coli challenge, but not S. aureus, specifically activates a protease that cleaves the C-terminus of APL1C. Inhibitor studies in vivo and in vitro protease assays suggest that a serine protease is responsible for APL1C cleavage. This study reveals that despite different challenges converging on activation of a TEP1 convertase-like activity, the mosquito complement-like pathway also includes pathogen-specific reactions.


Subject(s)
Anopheles/metabolism , Insect Proteins/metabolism , Animals , Antibodies/analysis , Antibodies/immunology , Complement System Proteins/metabolism , Dimerization , Escherichia coli/pathogenicity , Hemolymph/metabolism , Insect Proteins/genetics , Insect Proteins/immunology , Protease Inhibitors/pharmacology , Proteolysis/drug effects , RNA Interference , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Serine Proteases/metabolism , Staphylococcus aureus/pathogenicity , Substrate Specificity
11.
J Innate Immun ; 7(1): 74-86, 2015.
Article in English | MEDLINE | ID: mdl-25247883

ABSTRACT

Mosquitoes have potent innate defense mechanisms that protect them from infection by diverse pathogens. Much remains unknown about how different pathogens are sensed and specific responses triggered. Leucine-Rich repeat IMmune proteins (LRIMs) are a mosquito-specific family of putative innate receptors. Although some LRIMs have been implicated in mosquito immune responses, the function of most family members is largely unknown. We screened Anopheles gambiae LRIMs by RNAi for effects on mosquito infection by rodent malaria and found that LRIM9 is a Plasmodium berghei antagonist with phenotypes distinct from family members LRIM1 and APL1C, which are key components of the mosquito complement-like pathway. LRIM9 transcript and protein levels are significantly increased after blood feeding but are unaffected by Plasmodium or midgut microbiota. Interestingly, LRIM9 in the hemolymph is strongly upregulated by direct injection of the ecdysteroid, 20-hydroxyecdysone. Our data suggest that LRIM9 may define a novel anti-Plasmodium immune defense mechanism triggered by blood feeding and that hormonal changes may alert the mosquito to bolster its defenses in anticipation of exposure to blood-borne pathogens.


Subject(s)
Anopheles/immunology , Immunity, Innate/physiology , Insect Proteins/immunology , Intestines/immunology , Plasmodium berghei/immunology , Animals , Anopheles/parasitology , Intestines/parasitology , Mice
12.
PLoS Pathog ; 9(9): e1003623, 2013.
Article in English | MEDLINE | ID: mdl-24039584

ABSTRACT

The complement C3-like protein TEP1 of the mosquito Anopheles gambiae is required for defense against malaria parasites and bacteria. Two forms of TEP1 are present in the mosquito hemolymph, the full-length TEP1-F and the proteolytically processed TEP1(cut) that is part of a complex including the leucine-rich repeat proteins LRIM1 and APL1C. Here we show that the non-catalytic serine protease SPCLIP1 is a key regulator of the complement-like pathway. SPCLIP1 is required for accumulation of TEP1 on microbial surfaces, a reaction that leads to lysis of malaria parasites or triggers activation of a cascade culminating with melanization of malaria parasites and bacteria. We also demonstrate that the two forms of TEP1 have distinct roles in the complement-like pathway and provide the first evidence for a complement convertase-like cascade in insects analogous to that in vertebrates. Our findings establish that core principles of complement activation are conserved throughout the evolution of animals.


Subject(s)
Anopheles/enzymology , Complement Activation , Complement System Proteins/metabolism , Insect Proteins/metabolism , Serine Proteases/metabolism , Animals , Anopheles/genetics , Anopheles/parasitology , Complement System Proteins/genetics , Insect Proteins/genetics , Serine Proteases/genetics
14.
Pathog Glob Health ; 107(8): 463-74, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24428830

ABSTRACT

Anti-bacterial proteins in mosquitoes are known to play an important modulatory role on immune responses to infections with human pathogens including malaria parasites. In this study we characterized two members of the Anopheles gambiae Nimrod superfamily, namely AgNimB2 and AgEater. We confirm that current annotation of the An. gambiae genome incorrectly identifies AgNimB2 and AgEater as a single gene, AGAP009762. Through in silico and experimental approaches, it has been shown that AgNimB2 is a secreted protein that mediates phagocytosis of Staphylococcus aureus but not of Escherichia coli bacteria. We also reveal that this function does not involve a direct interaction of AgNimB2 with S. aureus. Therefore, AgNimB2 may act downstream of complement-like pathway activation, first requiring bacterial opsonization. In addition, it has been shown that AgNimB2 has an anti-Plasmodium effect. Conversely, AgEater is a membrane-bound protein that either functions redundantly or is dispensable for phagocytosis of E. coli or S. aureus. Our study provides insights into the role of members of the complex Nimrod superfamily in An. gambiae, the most important African vector of human malaria.


Subject(s)
Anopheles/genetics , Anopheles/immunology , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Animals , Escherichia coli/immunology , Female , Immunity, Innate , Phagocytosis , Plasmodium/immunology , Staphylococcus aureus/immunology
15.
PLoS Pathog ; 7(4): e1002023, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21533217

ABSTRACT

Malaria threatens half the world's population and exacts a devastating human toll. The principal malaria vector in Africa, the mosquito Anopheles gambiae, encodes 24 members of a recently identified family of leucine-rich repeat proteins named LRIMs. Two members of this family, LRIM1 and APL1C, are crucial components of the mosquito complement-like pathway that is important for immune defense against Plasmodium parasites. LRIM1 and APL1C circulate in the hemolymph exclusively as a disulfide-bonded complex that specifically interacts with the mature form of the complement C3-like protein, TEP1. We have investigated the specificity of LRIM1/APL1C complex formation and which regions of these proteins are required for interactions with TEP1. To address these questions, we have generated a set of LRIM1 and APL1C alleles altering key conserved structural elements and assayed them in cell culture for complex formation and interaction with TEP1. Our data indicate that heterocomplex formation is an intrinsic ability of LRIM1 and APL1C and identify key homologous cysteine residues forming the intermolecular disulfide bond. We also demonstrate that the coiled-coil domain is the binding site for TEP1 but also contributes to the specificity of LRIM1/APL1C complex formation. In addition, we show that the LRIM1/APL1C complex interacts with the mature forms of three other TEP proteins, one of which, TEP3, we have characterized as a Plasmodium antagonist. We conclude that LRIM1 and APL1C contain three distinct modules: a C-terminal coiled-coil domain that can carry different TEP protein cargoes, potentially with distinct functions, a central cysteine-rich region that controls complex formation and an N-terminal leucine-rich repeat with a putative role in pathogen recognition.


Subject(s)
Anopheles/metabolism , Insect Proteins/metabolism , Multiprotein Complexes/metabolism , Animals , Anopheles/genetics , Anopheles/parasitology , Hemolymph/metabolism , Hemolymph/parasitology , Humans , Insect Proteins/genetics , Malaria/genetics , Malaria/metabolism , Multiprotein Complexes/genetics , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship
16.
BMC Genomics ; 11: 531, 2010 Sep 30.
Article in English | MEDLINE | ID: mdl-20920294

ABSTRACT

BACKGROUND: The discovery and characterisation of factors governing innate immune responses in insects has driven the elucidation of many immune system components in mammals and other organisms. Focusing on the immune system responses of the malaria mosquito, Anopheles gambiae, has uncovered an array of components and mechanisms involved in defence against pathogen infections. Two of these immune factors are LRIM1 and APL1C, which are leucine-rich repeat (LRR) containing proteins that activate complement-like defence responses against malaria parasites. In addition to their LRR domains, these leucine-rich repeat immune (LRIM) proteins share several structural features including signal peptides, patterns of cysteine residues, and coiled-coil domains. RESULTS: The identification and characterisation of genes related to LRIM1 and APL1C revealed putatively novel innate immune factors and furthered the understanding of their likely molecular functions. Genomic scans using the shared features of LRIM1 and APL1C identified more than 20 LRIM-like genes exhibiting all or most of their sequence features in each of three disease-vector mosquitoes with sequenced genomes: An. gambiae, Aedes aegypti, and Culex quinquefasciatus. Comparative sequence analyses revealed that this family of mosquito LRIM-like genes is characterised by a variable number of 6 to 14 LRRs of different lengths. The "Long" LRIM subfamily, with 10 or more LRRs, and the "Short" LRIMs, with 6 or 7 LRRs, also share the signal peptide, cysteine residue patterning, and coiled-coil sequence features of LRIM1 and APL1C. The "TM" LRIMs have a predicted C-terminal transmembrane region, and the "Coil-less" LRIMs exhibit the characteristic LRIM sequence signatures but lack the C-terminal coiled-coil domains. CONCLUSIONS: The evolutionary plasticity of the LRIM LRR domains may provide templates for diverse recognition properties, while their coiled-coil domains could be involved in the formation of LRIM protein complexes or mediate interactions with other immune proteins. The conserved LRIM cysteine residue patterns are likely to be important for structural fold stability and the formation of protein complexes. These sequence-structure-function relations of mosquito LRIMs will serve to guide the experimental elucidation of their molecular roles in mosquito immunity.


Subject(s)
Anopheles/immunology , Insect Proteins/chemistry , Insect Proteins/metabolism , Proteins/chemistry , Proteins/metabolism , Sequence Analysis, Protein , Amino Acid Sequence , Animals , Anopheles/genetics , Cluster Analysis , Cysteine/metabolism , Disulfides/metabolism , Gene Expression Regulation , Genome, Insect/genetics , Hemolymph/metabolism , Insect Proteins/genetics , Leucine-Rich Repeat Proteins , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Proteins/genetics , Repetitive Sequences, Amino Acid , Structure-Activity Relationship
17.
BMC Microbiol ; 9: 154, 2009 Jul 30.
Article in English | MEDLINE | ID: mdl-19643026

ABSTRACT

BACKGROUND: Functional screens based on dsRNA-mediated gene silencing identified several Anopheles gambiae genes that limit Plasmodium berghei infection. However, some of the genes identified in these screens have no effect on the human malaria parasite Plasmodium falciparum; raising the question of whether different mosquito effector genes mediate anti-parasitic responses to different Plasmodium species. RESULTS: Four new An. gambiae (G3) genes were identified that, when silenced, have a different effect on P. berghei (Anka 2.34) and P. falciparum (3D7) infections. Orthologs of these genes, as well as LRIM1 and CTL4, were also silenced in An. stephensi (Nijmegen Sda500) females infected with P. yoelii (17XNL). For five of the six genes tested, silencing had the same effect on infection in the P. falciparum-An. gambiae and P. yoelii-An. stephensi parasite-vector combinations. Although silencing LRIM1 or CTL4 has no effect in An. stephensi females infected with P. yoelii, when An. gambiae is infected with the same parasite, silencing these genes has a dramatic effect. In An. gambiae (G3), TEP1, LRIM1 or LRIM2 silencing reverts lysis and melanization of P. yoelii, while CTL4 silencing enhances melanization. CONCLUSION: There is a broad spectrum of compatibility, the extent to which the mosquito immune system limits infection, between different Plasmodium strains and particular mosquito strains that is mediated by TEP1/LRIM1 activation. The interactions between highly compatible animal models of malaria, such as P. yoelii (17XNL)-An. stephensi (Nijmegen Sda500), is more similar to that of P. falciparum (3D7)-An. gambiae (G3).


Subject(s)
Anopheles/immunology , Host-Parasite Interactions/immunology , Plasmodium berghei/physiology , Plasmodium falciparum/physiology , Plasmodium yoelii/physiology , Animals , Anopheles/genetics , Anopheles/parasitology , Female , Gene Silencing , Genes, Insect , Glutathione Transferase/genetics , Insect Vectors/genetics , Insect Vectors/immunology , Insect Vectors/parasitology , Mice , Mice, Inbred BALB C , Plasmodium berghei/immunology , Plasmodium falciparum/immunology , Plasmodium yoelii/immunology , Species Specificity
18.
Science ; 324(5924): 258-61, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19264986

ABSTRACT

Leucine-rich repeat-containing proteins are central to host defense in plants and animals. We show that in the mosquito Anopheles gambiae, two such proteins that antagonize malaria parasite infections, LRIM1 and APL1C, circulate in the hemolymph as a high-molecular-weight complex held together by disulfide bridges. The complex interacts with the complement C3-like protein, TEP1, promoting its cleavage or stabilization and its subsequent localization on the surface of midgut-invading Plasmodium berghei parasites, targeting them for destruction. LRIM1 and APL1C are members of a protein family with orthologs in other disease vector mosquitoes and appear to be important effectors in innate mosquito defenses against human pathogens.


Subject(s)
Anopheles/immunology , Anopheles/parasitology , Complement Activation , Insect Proteins/metabolism , Plasmodium berghei/immunology , Amino Acid Motifs , Animals , Anopheles/genetics , Anopheles/metabolism , Complement C3/immunology , Complement C3/metabolism , Digestive System/parasitology , Female , Gene Knockdown Techniques , Gene Silencing , Genes, Insect , Hemolymph , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/isolation & purification , Insect Vectors/genetics , Insect Vectors/immunology , Insect Vectors/metabolism , Insect Vectors/parasitology , Leucine/chemistry , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Plasmodium berghei/physiology
19.
Cell ; 133(6): 1093-105, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18555784

ABSTRACT

Acquisition of planar cell polarity (PCP) in epithelia involves intercellular communication, during which cells align their polarity with that of their neighbors. The transmembrane proteins Frizzled (Fz) and Van Gogh (Vang) are essential components of the intercellular communication mechanism, as loss of either strongly perturbs the polarity of neighboring cells. How Fz and Vang communicate polarity information between neighboring cells is poorly understood. The atypical cadherin, Flamingo (Fmi), is implicated in this process, yet whether Fmi acts permissively as a scaffold or instructively as a signal is unclear. Here, we provide evidence that Fmi functions instructively to mediate Fz-Vang intercellular signal relay, recruiting Fz and Vang to opposite sides of cell boundaries. We propose that two functional forms of Fmi, one of which is induced by and physically interacts with Fz, bind each other to create cadherin homodimers that signal bidirectionally and asymmetrically, instructing unequal responses in adjacent cell membranes to establish molecular asymmetry.


Subject(s)
Cadherins/metabolism , Cell Polarity , Drosophila Proteins/metabolism , Drosophila/cytology , Drosophila/metabolism , Signal Transduction , Animals , Frizzled Receptors/metabolism , Membrane Proteins/metabolism , Models, Biological , Protein Interaction Mapping , Receptors, G-Protein-Coupled/metabolism
20.
PLoS Pathog ; 4(5): e1000070, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18497855

ABSTRACT

Despite being phylogenetically very close to Anopheles gambiae, the major mosquito vector of human malaria in Africa, Anopheles quadriannulatus is thought to be a non-vector. Understanding the difference between vector and non-vector mosquitoes can facilitate development of novel malaria control strategies. We demonstrate that An. quadriannulatus is largely resistant to infections by the human parasite Plasmodium falciparum, as well as by the rodent parasite Plasmodium berghei. By using genetics and reverse genetics, we show that resistance is controlled by quantitative heritable traits and manifested by lysis or melanization of ookinetes in the mosquito midgut, as well as by killing of parasites at subsequent stages of their development in the mosquito. Genes encoding two leucine-rich repeat proteins, LRIM1 and LRIM2, and the thioester-containing protein, TEP1, are identified as essential in these immune reactions. Their silencing completely abolishes P. berghei melanization and dramatically increases the number of oocysts, thus transforming An. quadriannulatus into a highly permissive parasite host. We hypothesize that the mosquito immune system is an important cause of natural refractoriness to malaria and that utilization of this innate capacity of mosquitoes could lead to new methods to control transmission of the disease.


Subject(s)
Anopheles/immunology , Disease Vectors , Host-Parasite Interactions , Immunity, Innate/immunology , Malaria/transmission , Animals , Anopheles/parasitology , Antibodies, Protozoan/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Female , Gene Silencing , Immunity, Innate/genetics , Insect Proteins/genetics , Insect Proteins/immunology , Leucine-Rich Repeat Proteins , Malaria/immunology , Malaria/parasitology , Mice , Plasmodium berghei/immunology , Plasmodium berghei/pathogenicity , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Proteins/genetics , Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...