Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Lancet Microbe ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38734029

ABSTRACT

BACKGROUND: During the 2017-18 influenza season in the USA, there was a high incidence of influenza illness and mortality. However, no apparent antigenic change was identified in the dominant H3N2 viruses, and the severity of the season could not be solely attributed to a vaccine mismatch. We aimed to investigate whether the altered virus properties resulting from gene reassortment were underlying causes of the increased case number and disease severity associated with the 2017-18 influenza season. METHODS: Samples included were collected from patients with influenza who were prospectively recruited during the 2016-17 and 2017-18 influenza seasons at the Johns Hopkins Hospital Emergency Departments in Baltimore, MD, USA, as well as from archived samples from Johns Hopkins Health System sites. Among 647 recruited patients with influenza A virus infection, 411 patients with whole-genome sequences were available in the Johns Hopkins Center of Excellence for Influenza Research and Surveillance network during the 2016-17 and 2017-18 seasons. Phylogenetic trees were constructed based on viral whole-genome sequences. Representative viral isolates of the two seasons were characterised in immortalised cell lines and human nasal epithelial cell cultures, and patients' demographic data and clinical outcomes were analysed. FINDINGS: Unique H3N2 reassortment events were observed, resulting in two predominant strains in the 2017-18 season: HA clade 3C.2a2 and clade 3C.3a, which had novel gene segment constellations containing gene segments from HA clade 3C.2a1 viruses. The reassortant re3C.2a2 viruses replicated with faster kinetics and to a higher peak titre compared with the parental 3C.2a2 and 3C.2a1 viruses (48 h vs 72 h). Furthermore, patients infected with reassortant 3C.2a2 viruses had higher Influenza Severity Scores than patients infected with the parental 3C.2a2 viruses (median 3·00 [IQR 1·00-4·00] vs 1·50 [1·00-2·00]; p=0·018). INTERPRETATION: Our findings suggest that the increased severity of the 2017-18 influenza season was due in part to two intrasubtypes, cocirculating H3N2 reassortant viruses with fitness advantages over the parental viruses. This information could help inform future vaccine development and public health policies. FUNDING: The Center of Excellence for Influenza Research and Response in the US, National Science and Technology Council, and Chang Gung Memorial Hospital in Taiwan.

2.
Influenza Other Respir Viruses ; 17(3): e13112, 2023 03.
Article in English | MEDLINE | ID: mdl-36875207

ABSTRACT

Background: Influenza virus causes significant morbidity and mortality with pandemic threat. Oleaceae Fructus Forsythiae is a medicinal herb. This study aimed to investigate antiviral effect of Phillyrin, a purified bioactive compound from this herb, and its reformulated preparation FS21 against influenza and its mechanism. Methods: Madin-Darby Canine Kidney (MDCK) cells were infected by one of six influenza viruses: five influenza A viruses (IAVs: three H1N1 and two H3N2) and one influenza B virus (IBV). Virus-induced cytopathic effects were observed and recorded under microscope. Viral replication and mRNA transcription were evaluated by quantitative polymerase chain reaction (qPCR) and protein expression by Western blot. Infectious virus production was assessed using TCID50 assay, and IC50 was calculated accordingly. Pretreatment and time-of-addition experiments with Phillyrin or FS21 added 1 h before or in early (0-3 h), mid (3-6 h), or late (6-9 h) stages of viral infection were performed to assess their antiviral effects. Mechanistic studies included hemagglutination and neuraminidase inhibition, viral binding and entry, endosomal acidification, and plasmid-based influenza RNA polymerase activity. Results: Phillyrin and FS21 had potent antiviral effects against all six IAV and IBV in a dose-dependent manner. Mechanistic studies showed that both suppressed influenza viral RNA polymerase with no effect on virus-mediated hemagglutination inhibition, viral binding or entry, endosomal acidification, or neuraminidase activity. Conclusions: Phillyrin and FS21 have broad and potent antiviral effects against influenza viruses with inhibition of viral RNA polymerase as the distinct antiviral mechanism.


Subject(s)
Antiviral Agents , Glucosides , Orthomyxoviridae Infections , Animals , Dogs , Humans , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza B virus , Neuraminidase , Viral Replicase Complex Proteins , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/drug therapy , Glucosides/pharmacology
3.
mBio ; 13(4): e0183922, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35856618

ABSTRACT

Inactivated influenza vaccines induce greater antibody responses in females than males among both humans and mice. To test the breadth of protection, we used recombinant mouse-adapted A/California/2009 (maA/Cal/09) H1N1 viruses containing mutations at one (1M), two (2M), or three (3M) antigenic sites, in addition to a virus containing the 1M mutation and a substitution of the Ca2 antigenic site (Sub) with one derived from an H5 hemagglutinin (HA) to challenge mice of both sexes. Following maA/Cal/09 vaccination, females produced greater virus-specific, class-switched total IgG and IgG2c antibodies against the vaccine and all mutant viruses, and antibodies from females recognized a greater number of unique, linear HA epitopes than did antibodies from males. While females had greater neutralizing antibody titers against the vaccine virus, both sexes showed a lower neutralization capacity against mutant viruses. After virus challenge, vaccinated females had lower pulmonary virus titers and reduced morbidity than males for the 1M and 2M viruses, but not the Sub virus. Females generated greater numbers of germinal center (GC) B cells containing superior somatic hypermutation (SHM) frequencies than vaccinated males. Deletion of activation-induced cytidine deaminase (Aicda) eliminated female-biased immunity and protection against the 2M virus. Harnessing methods to improve GC B cell responses and frequencies of SHM, especially in males, should be considered in the development of universal influenza vaccines. IMPORTANCE Adult females develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection would be dependent on the extent of virus diversity as well as molecular mechanisms in B cells which constrain the breadth of epitope recognition. We developed a panel of mouse-adapted (ma) A/Cal/09 viruses that had mutations in the immunodominant hemagglutinin. Following vaccination against maA/Cal/09, females were better able to neutralize maA/Cal/09 than males, but neutralization of mutant maA/Cal/09 viruses was equally poor in both sexes, despite vaccinated females being better protected against these viruses. Vaccinated females benefited from the greater production of class-switched, somatically hypermutated antibodies generated in germinal center B cells, which increased recognition of more diverse maA/Cal/09 hemagglutinin antigen epitopes. Female-biased protection against influenza infection and disease after vaccination is driven by differential mechanisms in males versus females and should be considered in the design of novel vaccine platforms.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Antibody Diversity , Epitopes , Female , Germinal Center , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins , Humans , Influenza A Virus, H1N1 Subtype/genetics , Male , Mice , Vaccines, Inactivated
4.
Vaccine ; 40(32): 4544-4553, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35718589

ABSTRACT

From 2013 to 2016, the H1N1 component of live, attenuated influenza vaccine (LAIV) performed very poorly in contrast to the inactivated influenza vaccine. We utilized a primary, differentiated human nasal epithelial cell (hNEC) culture system to assess the replication differences between isogenic LAIVs containing the HA segment from either A/Bolivia/559/2013 (rBol), which showed poor vaccine efficacy, and A/Slovenia/2903/2015 (rSlov), which had reasonable vaccine efficacy. There were minimal differences in infectious virus production in Madin-Darby Canine Kidney (MDCK) cells, but the rSlov LAIV showed markedly improved replication in hNEC cultures at both 32 °C and 37 °C, demonstrating that the HA segment alone could impact LAIV replication in physiologically relevant systems. The rSlov-infected hNEC cultures showed stronger production of interferon and proinflammatory chemokines which might also be contributing to the increased overall vaccine effectiveness through enhanced recruitment and activation of immune cells. An M2-S86A mutation had no positive effects on H1 LAIV replication in hNEC cultures, in contrast to the increased infectious virus production seen in an H3 LAIV. No obvious defects in viral RNA packaging were detected, suggesting that HA function, rather than defective particle production, may be driving the differential infectious virus production in hNEC cultures. Overall, we have shown that not all H1 HA segments can be successfully used in LAIV, and this phenotype cannot be fully explained by segment incompatibilities. Physiologically relevant temperatures and primary cell cultures should be used to demonstrate that candidate LAIVs can replicate efficiently, which is a necessary property for effective vaccines.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Animals , Dogs , Humans , Madin Darby Canine Kidney Cells , Vaccines, Attenuated
5.
Virus Evol ; 7(1): veab047, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34131512

ABSTRACT

The 2014-15 influenza season saw the emergence of an H3N2 antigenic drift variant that formed the 3C.2a HA clade. Whole viral genomes were sequenced from nasopharyngeal swabs of ninety-four patients with confirmed influenza A virus infection and primary human nasal epithelial cell cultures used to efficiently isolate H3N2 viruses. The isolates were classified by HA clade and the presence of a new set of co-selected mutations in NA (a glycosylation site, NAg+) and PB1-F2 (H75P). The NA and PB1-F2 mutations were present in a subset of clade 3C.2a viruses (NAg+F2P), which dominated during the subsequent influenza seasons. In human nasal epithelial cell cultures, a virus with the novel NAg+F2P genotype replicated less well compared with a virus with the parental genotype. Retrospective analyses of clinical data showed that NAg+F2P genotype viruses were associated with increased cough and shortness of breath in infected patients.

6.
Vaccine ; 39(24): 3225-3235, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33985852

ABSTRACT

Live Attenuated Influenza Virus (LAIV) is administered to and replicates in the sinonasal epithelium. Candidate LAIV vaccine strains are selected based on their ability to replicate to a high titer in embryonated hen's eggs, a process that can lead to mutations which alter the receptor binding and antigenic structure of the hemagglutinin (HA) protein. In the 2012-2013 northern hemisphere vaccine, the H3N2 HA vaccine strain contained three amino acid changes - H156Q, G186V and S219Y - which altered HA antigenic structure and thus presumably decreased vaccine efficacy. To determine if these mutations also altered LAIV replication, reabcombinant viruses were created that encoded the wild-type (WT) parental HA of A/Victoria/361/2011 (WT HA LAIV), the egg adapted HA (EA HA LAIV) from the A/Victoria/361/2011 vaccine strain and an HA protein with additional amino acid changes to promote α2,3 sialic acid binding (2,3 EA HA LAIV). The WT HA LAIV bound α2,6 sialic compared to the EA HA LAIV and 2,3 EA HA LAIV which both demonstrated an increased preference for α2,3 sialic acid. On MDCKs, the WT HA and EA HA LAIVs showed similar replication at 32 °C but at 37 °C the EA HA LAIV replicated to lower infectious virus titers. The 2,3 EA HA LAIV replicated poorly at both temperatures. This replication phenotype was similar on human nasal epithelial cell (hNEC) cultures, however the WT HA LAIV induced the highest amount of IFN-λ and infected more nasal epithelial cells compared to the other viruses. Together, these data indicate that egg adaption mutations in the HA protein that confer preferential α2,3 sialic acid binding may adversely affect LAIV replication and contribute to reduced vaccine efficacy.


Subject(s)
Influenza Vaccines , Influenza, Human , Animals , Chickens , Epithelial Cells , Female , Humans , Influenza A Virus, H3N2 Subtype , N-Acetylneuraminic Acid , Vaccines, Attenuated , Virus Replication
7.
Am J Transplant ; 21(2): 582-592, 2021 02.
Article in English | MEDLINE | ID: mdl-32741100

ABSTRACT

Vascularized composite allografts (VCAs) can restore fully functional anatomic units in patients with limb amputations or severe facial tissue loss. However, acute rejection of the skin is frequently observed and underscores the importance of developing tolerance induction protocols. In this study, we have characterized the skin immune system in VCAs. We demonstrate infiltration of recipient leukocytes, regardless of rejection status, and in tolerant mixed hematopoietic chimeras, the co-existence of these cells with donor leukocytes in the absence of rejection. Here we characterize the dermal T cell and epidermal Langerhans cell components of the skin immune system in our porcine model of VCA tolerance, and the kinetics of cutaneous chimerism in both of these populations in VCAs transplanted to tolerant and nontolerant recipients, as well as in host skin. Furthermore, in biopsies from the first patient to receive a hand transplant in our program, we demonstrate the presence of recipient T cells in the skin of the transplanted limb in the absence of clinical or histological evidence of rejection.


Subject(s)
Composite Tissue Allografts , Animals , Graft Rejection/etiology , Graft Survival , Humans , Leukocytes , Swine , Transplantation Chimera
8.
Clin Infect Dis ; 73(4): e860-e869, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33104776

ABSTRACT

BACKGROUND: Repeated coronavirus disease 2019 (COVID-19) molecular testing can lead to positive test results after negative results and to multiple positive results over time. The association between positive test results and infectious virus is important to quantify. METHODS: A 2-month cohort of retrospective data and consecutively collected specimens from patients with COVID-19 or patients under investigation were used to understand the correlation between prolonged viral RNA positive test results, cycle threshold (Ct) values and growth of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cell culture. Whole-genome sequencing was used to confirm virus genotype in patients with prolonged viral RNA detection. Droplet digital polymerase chain reaction was used to assess the rate of false-negative COVID-19 diagnostic test results. RESULTS: In 2 months, 29 686 specimens were tested and 2194 patients underwent repeated testing. Virus recovery in cell culture was noted in specimens with a mean Ct value of 18.8 (3.4) for SARS-CoV-2 target genes. Prolonged viral RNA shedding was associated with positive virus growth in culture in specimens collected up to 21 days after the first positive result but mostly in individuals symptomatic at the time of sample collection. Whole-genome sequencing provided evidence the same virus was carried over time. Positive test results following negative results had Ct values >29.5 and were not associated with virus culture. Droplet digital polymerase chain reaction results were positive in 5.6% of negative specimens collected from patients with confirmed or clinically suspected COVID-19. CONCLUSIONS: Low Ct values in SARS-CoV-2 diagnostic tests were associated with virus growth in cell culture. Symptomatic patients with prolonged viral RNA shedding can also be infectious.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Retrospective Studies , Virus Shedding
9.
J Infect Dis ; 222(8): 1371-1382, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32496543

ABSTRACT

BACKGROUND: An antigenic mismatch between the vaccine and circulating H3N2 strains was hypothesized to contribute to the severity of the 2017-2018 season in North America. METHODS: Serum and nasal washes were collected from influenza positive and negative patients during the 2017-2018 season to determine neutralizing antibody (nAb) titers and for influenza virus sequencing, respectively. RESULTS: The circulating and vaccine H3N2 virus strains were different clades, with the vaccine strain being clade 3C.2a and the circulating viruses being 3C.2a2 or 3C.3a. At enrollment, both the H3N2 negative and positive patients had greater nAb titers to the egg-adapted vaccine virus compared to the cell-grown vaccine but the H3N2-negative population had significantly greater titers to the circulating 3C.2a2. Among H3N2-positive patients, vaccination, younger age, and female sex were associated with greater nAb responses to the egg-adapted vaccine H3N2 virus but not to the cell-grown vaccine or circulating viruses. CONCLUSIONS: For the 2017-2018 circulating viruses, mutations introduced by egg adaptation decreased vaccine efficacy. No increased protection was afforded by vaccination, younger age, or female sex against 2017-2018 circulating H3N2 viruses.


Subject(s)
Antibodies, Neutralizing/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza, Human/prevention & control , Influenza, Human/virology , Male , Middle Aged , Mutation , Sex Factors , United States/epidemiology , Vaccination , Young Adult
10.
PLoS Pathog ; 16(6): e1008411, 2020 06.
Article in English | MEDLINE | ID: mdl-32598381

ABSTRACT

In the 2014-2015 influenza season a novel neuraminidase (NA) genotype was detected in global human influenza A surveillance. This novel genotype encoded an N-linked glycosylation site at position 245-247 in the NA protein from clade 3c.2a H3N2 viruses. In the years following the 2014-2015 season, this novel NA glycosylation genotype quickly dominated the human H3N2 population of viruses. To assess the effect this novel N-linked glycan has on virus fitness and antibody binding, recombinant viruses with (NA Gly+) or without (NA Gly-) the 245 NA glycan were created. Viruses with the 245 NA Gly+ genotype grew to a significantly lower infectious virus titer on primary, differentiated human nasal epithelial cells (hNEC) compared to viruses with the 245 NA Gly- genotype, but growth was similar on immortalized cells. The 245 NA Gly+ blocked human and rabbit monoclonal antibodies that target the enzymatic site from binding to their epitope. Additionally, viruses with the 245 NA Gly+ genotype had significantly lower enzymatic activity compared to viruses with the 245 NA Gly- genotype. Human monoclonal antibodies that target residues near the 245 NA glycan were less effective at inhibiting NA enzymatic activity and virus replication of viruses encoding an NA Gly+ protein compared to ones encoding NA Gly- protein. Additionally, a recombinant H6N2 virus with the 245 NA Gly+ protein was more resistant to enzymatic inhibition from convalescent serum from H3N2-infected humans compared to viruses with the 245 NA Gly- genotype. Finally, the 245 NA Gly+ protected from NA antibody mediated virus neutralization. These results suggest that while the 245 NA Gly+ decreases virus replication in hNECs and decreases enzymatic activity, the 245 NA glycan blocks the binding of monoclonal and human serum NA specific antibodies that would otherwise inhibit enzymatic activity and virus replication.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Influenza A Virus, H3N2 Subtype/physiology , Influenza, Human , Neuraminidase , Viral Proteins , Virus Replication , Animals , Dogs , HEK293 Cells , Humans , Influenza, Human/genetics , Influenza, Human/immunology , Madin Darby Canine Kidney Cells , Neuraminidase/genetics , Neuraminidase/immunology , Rabbits , Viral Proteins/genetics , Viral Proteins/immunology , Virus Replication/genetics , Virus Replication/immunology
11.
Mol Oncol ; 10(4): 553-65, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26643572

ABSTRACT

Regulatory T cells (Treg) play an important role in modulating the immune response and has attracted increasing attention in diverse fields such as cancer treatment, transplantation and autoimmune diseases. CC chemokine receptor 4 (CCR4) is expressed on the majority of Tregs, especially on effector Tregs. Recently we have developed a diphtheria-toxin based anti-human CCR4 immunotoxin for depleting CCR4(+) cells in vivo. In this study, we demonstrated that the anti-human CCR4 immunotoxin bound and depleted monkey CCR4(+) cells in vitro. We also demonstrated that the immunotoxin bound to the CCR4(+)Foxp3(+) monkey Tregs in vitro. In vivo studies performed in two naive cynomolgus monkeys revealed 78-89% CCR4(+)Foxp3(+) Treg depletion in peripheral blood lasting approximately 10 days. In lymph nodes, 89-96% CCR4(+)Foxp3(+) Tregs were depleted. No effect was observed in other cell populations including CD8(+) T cells, other CD4(+) T cells, B cells and NK cells. To our knowledge, this is the first agent that effectively depleted non-human primate (NHP) Tregs. This immunotoxin has potential to deplete effector Tregs for combined cancer treatment.


Subject(s)
Diphtheria Toxin/pharmacology , Immunotoxins/pharmacology , Lymphocyte Depletion/methods , Receptors, CCR4/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Diphtheria Toxin/immunology , Humans , Immunotoxins/immunology , Macaca fascicularis , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...