Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Surg Res ; 259: 242-252, 2021 03.
Article in English | MEDLINE | ID: mdl-33250204

ABSTRACT

BACKGROUND: The optimal substrate for hypothermic machine perfusion preservation of donor hearts is unknown. Fatty acids, acetate, and ketones are preferred substrates of the heart during normothermic perfusion, but cannot replete the tricarboxylic acid (TCA) cycle directly. Propionate, an anaplerotic substrate, can replenish TCA cycle intermediates and may affect cardiac metabolism. The purpose of this study was to determine myocardial substrate preferences during hypothermic machine perfusion and to assess if an anaplerotic substrate was required to maintain the TCA cycle intermediate pool in perfused hearts. METHODS: Groups of rat hearts were perfused with carbon-13 (13C)-labeled substrates (acetate, ß-hydroxybutyrate, octanoate, with and without propionate) at low and high concentrations. TCA cycle intermediate concentrations, substrate selection, and TCA cycle flux were determined by gas chromatography/mass spectroscopy and 13C magnetic resonance spectroscopy. RESULTS: Acetate and octanoate were preferentially oxidized, whereas ß-hydroxybutyrate was a minor substrate. TCA cycle intermediate concentrations except fumarate were higher in substrate-containing perfusion groups compared with either the no-substrate perfusion group or the no-ischemia control group. CONCLUSIONS: The presence of an exogenous, oxidizable substrate is required to support metabolism in the cold perfused heart. An anaplerotic substrate is not essential to maintain the TCA cycle intermediate pool and support oxidative metabolism under these conditions.


Subject(s)
Citric Acid Cycle , Heart Transplantation , Myocardium/metabolism , Organ Preservation , Acetyl Coenzyme A/biosynthesis , Animals , Caprylates/metabolism , Male , Oxygen Consumption , Perfusion , Pyruvic Acid/metabolism , Rats , Rats, Sprague-Dawley
2.
Ann Thorac Surg ; 107(5): 1448-1455, 2019 05.
Article in English | MEDLINE | ID: mdl-30552887

ABSTRACT

BACKGROUND: The pedicled greater omentum has been shown to offer benefit in ischemic heart disease for both animal models and human patients. The impact of cardio-omentopexy in a pressure overload model of left ventricular hypertrophy (LVH) is unknown. METHODS: LVH was created in rats by banding the ascending aorta after right thoracotomy (n = 23). Sham surgery was performed in 12 additional rats. Six weeks after banding, surviving LVH rats were assigned to cardio-omentopexy by left thoracotomy (LVH+Om, n = 8) or sham left thoracotomy (LVH, n = 8). Sham rats also underwent left thoracotomy for cardio-omentopexy (Sham+Om, n = 6); the remaining rats underwent sham left thoracotomy (Sham, n = 6). RESULTS: Echocardiography 10 weeks after cardio-omentopexy revealed LV end-systolic diameter, cardiomyocyte diamter, and myocardial fibrosis in the LVH group were significantly increased compared with the LVH+Om, Sham+Om, and Sham groups (p < 0.01). LV ejection fraction of the LVH group was lower than the LVH+Om group (p < 0.01). Gene expression analysis revealed significantly lower levels of sarcoendoplasmic reticulum calcium adenosine triphosphatase 2b in LVH rats than in the LVH+Om, Sham+Om, and Sham groups (p < 0.01). In contrast, collagen type 1 α 1 chain, lysyl oxidase-like protein 1, nuclear protein-1, and transforming growth factor- ß1 in the LVH group were significantly higher than in the LVH+Om cohort (p < 0.01), consistent with a reduced fibrotic phenotype after omentopexy. Lectin staining showed myocardial capillary density of the LVH group was significantly lower than all other groups (p < 0.01). CONCLUSIONS: Cardio-omentopexy reduced cardiac dilation, contractile dysfunction, cardiomyocyte hypertrophy, and myocardial fibrosis, while maintaining other molecular indicators of contractile function in this LVH model.


Subject(s)
Cardiac Surgical Procedures , Endomyocardial Fibrosis/prevention & control , Heart Failure/prevention & control , Hypertrophy, Left Ventricular/surgery , Omentum/surgery , Animals , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Endomyocardial Fibrosis/etiology , Heart Failure/etiology , Hypertrophy, Left Ventricular/complications , Hypertrophy, Left Ventricular/pathology , Male , Myocardium , Rats , Rats, Sprague-Dawley , Stroke Volume
3.
Surgery ; 163(2): 436-443, 2018 02.
Article in English | MEDLINE | ID: mdl-29241990

ABSTRACT

BACKGROUND: The influence of diabetic therapies on myocardial substrate selection during cardiac surgery is unknown but may be important to ensure optimal surgical outcomes. We hypothesized that metformin and insulin alter myocardial substrate selection during cardiac surgery and may affect reperfusion cardiac function. METHODS: Rat hearts (n = 8 per group) were evaluated under 3 metabolic conditions: normokalemia, cardioplegia, or bypass. Groups were perfused with Krebs-Henseleit buffer in the presence of no additives, metformin, insulin, or both insulin and metformin. Perfusion buffer containing physiologic concentrations of energetic substrates with different carbon-13 (13C) labeling patterns were used to determine substrate oxidation preferences using 13C magnetic resonance spectroscopy and glutamate isotopomer analysis. Rate pressure product and oxygen consumption were measured. RESULTS: Myocardial function was not different between groups. For normokalemia, ketone oxidation was reduced in the presence of insulin and the combination of metformin and insulin reduced fatty acid oxidation. Metformin reduced fatty acid and ketone oxidation during cardioplegia. Fatty acid oxidation was increased in the bypass group compared with all other conditions. CONCLUSION: Metformin and insulin affect substrate utilization and reduce fatty acid oxidation before reperfusion. These alterations in substrate oxidation did not affect myocardial function in otherwise normal hearts.


Subject(s)
Heart/drug effects , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Metformin/pharmacology , Myocardium/metabolism , Animals , Cardioplegic Solutions , Coronary Artery Bypass , Fatty Acids/metabolism , Isolated Heart Preparation , Male , Oxidation-Reduction , Oxygen Consumption , Rats, Sprague-Dawley
4.
J Heart Lung Transplant ; 35(8): 1031-6, 2016 08.
Article in English | MEDLINE | ID: mdl-27160493

ABSTRACT

BACKGROUND: Machine perfusion is a promising strategy for donor heart preservation, but delivery of perfusate through the aorta may be limited by aortic valve incompetence. We hypothesized that retrograde machine perfusion preservation through the coronary sinus avoided this issue and allowed for recovery of donor hearts after long-term storage. METHODS: Canine hearts were procured after arrest with 1 liter University of Wisconsin Machine Perfusion Solution (UWMPS) and preserved for 14 hours by static hypothermic storage (Static group, n = 5) or retrograde machine perfusion through the coronary sinus (RP group, n = 5). Myocardial oxygen consumption (MVo2) and lactate were monitored in perfused hearts. Hearts were implanted and reperfused for 6 hours. The pre-load recruitable stroke work was determined as a measure of myocardial function. Cardiac enzyme release was quantified. Cell death was evaluated by TUNEL (terminal deoxynucleotidyltransferase-mediated deoxy uridine triphosphate nick-end label). RESULTS: MVo2 decreased initially then stabilized. Lactate accumulation was low in RP hearts. All RP hearts separated from cardiopulmonary bypass. All Static hearts required a return to bypass (p < .05). Pre-load recruitable stroke work in RP hearts was increased (55 ± 7 mm Hg) compared with Static (20 ± 11 mm Hg, p < .05) and did not differ from baseline values. Creatine kinase release was greater in Static group hearts (102 ± 16 IU/liter/g) than in RP hearts (51 ± 8 IU/liter/g, p < .05). The fraction of TUNEL-positive cells was higher in the Static group, but this difference was not significant. CONCLUSIONS: Retrograde machine perfusion can preserve donor hearts for long intervals. Cardiac function after implantation suggested excellent myocardial protection. Retrograde machine perfusion appears promising for extending the donor ischemic interval and improving results of heart transplantation.


Subject(s)
Coronary Sinus , Animals , Dogs , Heart , Heart Transplantation , Myocardium , Organ Preservation , Organ Preservation Solutions , Perfusion
SELECTION OF CITATIONS
SEARCH DETAIL