Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(5): 109716, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38655202

ABSTRACT

The viral vector-based COVID-19 vaccine Ad26.COV2.S has been recommended by the WHO since 2021 and has been administered to over 200 million people. Prior studies have shown that Ad26.COV2.S induces durable neutralizing antibodies (NAbs) that increase in coverage of variants over time, even in the absence of boosting or infection. Here, we studied humoral responses following Ad26.COV2.S vaccination in individuals enrolled in the initial Phase 1/2a trial of Ad26.COV2.S in 2020. Through 8 months post vaccination, serum NAb responses increased to variants, including B.1.351 (Beta) and B.1.617.2 (Delta), without additional boosting or infection. The level of somatic hypermutation, measured by nucleotide changes in the VDJ region of the heavy and light antibody chains, increased in Spike-specific B cells. Highly mutated mAbs from these sequences neutralized more SARS-CoV-2 variants than less mutated comparators. These findings suggest that the increase in NAb breadth over time following Ad26.COV2.S vaccination is mediated by affinity maturation.

2.
Sci Transl Med ; 16(740): eadl4317, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536937

ABSTRACT

The 2022-2023 mpox outbreak triggered vaccination efforts using smallpox vaccines that were approved for mpox, including modified vaccinia Ankara (MVA; JYNNEOS), which is a safer alternative to live replicating vaccinia virus (ACAM2000). Here, we compare the immunogenicity and protective efficacy of JYNNEOS by the subcutaneous or intradermal routes, ACAM2000 by the percutaneous route, and subunit Ad35 vector-based L1R/B5R or L1R/B5R/A27L/A33R vaccines by the intramuscular route in rhesus macaques. All vaccines provided robust protection against high-dose intravenous mpox virus challenge with the current outbreak strain, with ACAM2000 providing near complete protection and JYNNEOS and Ad35 vaccines providing robust but incomplete protection. Protection correlated with neutralizing antibody responses as well as L1R/M1R- and B5R/B6R-specific binding antibody responses, although additional immune responses likely also contributed to protection. This study demonstrates the protective efficacy of multiple vaccine platforms against mpox virus challenge, including both current clinical vaccines and vectored subunit vaccines.


Subject(s)
Mpox (monkeypox) , Smallpox Vaccine , Animals , Vaccinia virus/genetics , Macaca mulatta , Antibodies, Viral , Vaccines, Subunit
3.
Nat Biotechnol ; 42(3): 510-517, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37095347

ABSTRACT

Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration.


Subject(s)
COVID-19 , Vaccines , Humans , Animals , Mice , COVID-19 Vaccines/genetics , mRNA Vaccines , RNA, Messenger/genetics , SARS-CoV-2/genetics , COVID-19/prevention & control
4.
NPJ Vaccines ; 8(1): 23, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36823160

ABSTRACT

Despite the availability of several effective SARS-CoV-2 vaccines, additional vaccines will be required for optimal global vaccination. In this study, we investigate the immunogenicity and protective efficacy of the GBP510 protein subunit vaccine adjuvanted with AS03, which has recently been authorized for marketing in South Korea under the trade name SKYCovioneTM. The antigen in GBP510/AS03 is a two-part recombinant nanoparticle, which displays 60 receptor binding domain (RBD) proteins of SARS-CoV-2 Spike on its surface. In this study we show that GBP510/AS03 induced robust immune responses in rhesus macaques and protected against a high-dose SARS-CoV-2 Delta challenge. We vaccinated macaques with two or three doses of GBP510/AS03 matched to the ancestral Wuhan strain of SARS-CoV-2 or with two doses of GBP510/AS03 matched to the ancestral strain and one dose matched to the Beta strain. Following the challenge with Delta, the vaccinated macaques rapidly controlled the virus in bronchoalveolar lavage and nasal swabs. Binding and neutralizing antibody responses prior to challenge correlated with protection against viral replication postchallenge. These data are consistent with data with this vaccine from the phase 3 clinical trial.

5.
Sci Adv ; 8(47): eade4433, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36417525

ABSTRACT

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and waning immunity call for next-generation vaccine strategies. Here, we assessed the immunogenicity and protective efficacy of two SARS-CoV-2 vaccines targeting the WA1/2020 spike protein, Ad26.COV2.S (Ad26) and Spike ferritin Nanoparticle (SpFN), in nonhuman primates, delivered as either a homologous (SpFN/SpFN and Ad26/Ad26) or heterologous (Ad26/SpFN) prime-boost regimen. The Ad26/SpFN regimen elicited the highest CD4 T cell and memory B cell responses, the SpFN/SpFN regimen generated the highest binding and neutralizing antibody responses, and the Ad26/Ad26 regimen generated the most robust CD8 T cell responses. Despite these differences, protective efficacy against SARS-CoV-2 Omicron BA.1 challenge was similar for all three regimens. After challenge, all vaccinated monkeys showed significantly reduced peak and day 4 viral loads in both bronchoalveolar lavage and nasal swabs as compared with sham animals. The efficacy conferred by these three immunologically distinct vaccine regimens suggests that both humoral and cellular immunity contribute to protection against SARS-CoV-2 Omicron challenge.

6.
NPJ Vaccines ; 7(1): 2, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013325

ABSTRACT

SARS-CoV-2 Spike-specific binding and neutralizing antibodies, elicited either by natural infection or vaccination, have emerged as potential correlates of protection. An important question, however, is whether vaccine-elicited antibodies in humans provide direct, functional protection from SARS-CoV-2 infection and disease. In this study, we explored directly the protective efficacy of human antibodies elicited by Ad26.COV2.S vaccination by adoptive transfer studies. IgG from plasma of Ad26.COV2.S vaccinated individuals was purified and transferred into naïve golden Syrian hamster recipients, followed by intra-nasal challenge of the hamsters with SARS-CoV-2. IgG purified from Ad26.COV2.S-vaccinated individuals provided dose-dependent protection in the recipient hamsters from weight loss following challenge. In contrast, IgG purified from placebo recipients provided no protection in this adoptive transfer model. Attenuation of weight loss correlated with binding and neutralizing antibody titers of the passively transferred IgG. This study suggests that Ad26.COV2.S-elicited antibodies in humans are mechanistically involved in protection against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...