Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Article in English | MEDLINE | ID: mdl-37487291

ABSTRACT

In the present study an enantioselective high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the first time for quantitative determination of the recreational drug of abuse methylone and its major metabolites in oral fluid. The simultaneous chemo- and enantioseparation of methylone and its major metabolites was performed on a polysaccharide-based chiral column based on amylose tris(5-chloro-3-methylphenylcarbamate) as chiral selector (Lux i-Amylose-3) with methanol containing 0.4 % (v/v) aqueous ammonium hydroxide as mobile phase. The time required for enantioselective analysis of methylone and its 2 major metabolites was 15 min. This method was fully validated following the Organization of Scientific Area Committees (OSAC) for Forensic Science guidelines. This method was applied for the enantioselective determination of methylone and its metabolites in oral fluid and enantioselectivity in metabolism and pharmacokinetic of the parent compound and metabolites was observed. While the first enantiomer of methylone was found at higher concentration, both metabolites shown greater concentration for the second enantiomer. The results revealed that MET undergoes an enantioselective biotransformation to its metabolites HMMC and MDC, with S-(-)-MET more rapidly metabolized and eliminated from the body.


Subject(s)
Amylose , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Amylose/chemistry , Stereoisomerism
2.
Int J Mol Sci ; 24(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37298339

ABSTRACT

This study presents a validated GC-MS/MS method for the detection and quantification of 4-chloromethcathinone or clephedrone (4-CMC), N-ethyl Pentedrone (NEP), and N-ethyl Hexedrone (NEH, also named HEXEN) in oral fluid and sweat and verifies its feasibility in determining human oral fluid concentrations and pharmacokinetics following the administration of 100 mg of 4-CMC orally and 30 mg of NEP and NEH intranasally. A total of 48 oral fluid and 12 sweat samples were collected from six consumers. After the addition of 5 µL of methylone-d3 and 200 µL of 0.5 M ammonium hydrogen carbonate, an L/L extraction was carried out using ethyl acetate. The samples, dried under a nitrogen flow, were then derivatized with pentafluoropropionic anhydride and dried again. One microliter of the sample reconstituted in 50 µL of ethyl acetate was injected into GC-MS/MS. The method was fully validated according to international guidelines. Our results showed how, in oral fluid, the two cathinones taken intranasally were absorbed very rapidly, within the first hour, when compared with the 4-CMC which reached its maximum concentration peak in the first three hours. We observed that these cathinones were excreted in sweat in an amount equivalent to approximately 0.3% of the administered dose for 4-CMC and NEP. The total NEH excreted in sweat 4 h after administration was approximately 0.2% of the administered dose. Our results provide, for the first time, preliminary information about the disposition of these synthetic cathinones in the consumers' oral fluid and sweat after controlled administration.


Subject(s)
Synthetic Cathinone , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Pilot Projects , Sweat
3.
Int J Mol Sci ; 24(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37108557

ABSTRACT

The aim of this study was to determine the excretion of methylone and its metabolites in sweat following the ingestion of increasing controlled doses of 50, 100, 150 and 200 mg of methylone to twelve healthy volunteers involved in a clinical trial. Methylone and its metabolites 4-hydroxy-3-methoxy-N-methylcathinone (HMMC) and 3,4-methylenedioxycathinone (MDC) were analyzed in sweat patches by liquid chromatography-tandem mass spectrometry. Methylone and MDC were detected in sweat at 2 h and reached their highest accumulation (Cmax) at 24 h after the administration of 50, 100, 150 and 200 mg doses. In contrast, HMMC was not detectable at any time interval after each dose. Sweat proved to be a suitable matrix for methylone and its metabolites' determination in clinical and toxicological studies, providing a concentration that reveals recent drug consumption.


Subject(s)
Methamphetamine , Sweat , Humans , Chromatography, Liquid/methods , Mass Spectrometry , Methamphetamine/metabolism , Sweat/chemistry
4.
Metabolites ; 13(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37110127

ABSTRACT

The aim of this study was to investigate methylone and its metabolites concentration in oral fluid following controlled increasing doses, focusing on the effect of oral fluid pH. Samples were obtained from a clinical trial where twelve healthy volunteers participated after ingestion of 50, 100, 150 and 200 mg of methylone. Concentration of methylone and its metabolites 4-hydroxy-3-methoxy-N-methylcathinone (HMMC) and 3,4-methylenedioxycathinone in oral fluid were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pharmacokinetic parameters were estimated, and the oral fluid-to-plasma ratio (OF/P) at each time interval was calculated and correlated with the oral fluid pH using data from our previous study in plasma. Methylone was detected at all time intervals after each dose; MDC and HMMC were not detectable after the lowest dose. Oral fluid concentrations of methylone ranged between 88.3-503.8, 85.5-5002.3, 182.8-13,201.8 and 214.6-22,684.6 ng/mL following 50, 100, 150 and 200 mg doses, respectively, peaked between 1.5 and 2.0 h, and were followed by a progressive decrease. Oral fluid pH was demonstrated to be affected by methylone administration. Oral fluid is a valid alternative to plasma for methylone determination for clinical and toxicological studies, allowing for a simple, easy and non-invasive sample collection.

5.
Front Pharmacol ; 14: 1122861, 2023.
Article in English | MEDLINE | ID: mdl-36873994

ABSTRACT

Methylone is one of the most common synthetic cathinones popularized as a substitute for 3,4-methylenedioxymethamphetamine (MDMA, midomafetamine) owing to its similar effects among users. Both psychostimulants exhibit similar chemistry (i.e., methylone is a ß-keto analog of MDMA) and mechanisms of action. Currently, the pharmacology of methylone remains scarcely explored in humans. Herein, we aimed to evaluate the acute pharmacological effects of methylone and its abuse potential in humans when compared with that of MDMA following oral administration under controlled conditions. Seventeen participants of both sexes (14 males, 3 females) with a previous history of psychostimulant use completed a randomized, double-blind, placebo-controlled, crossover clinical trial. Participants received a single oral dose of 200 mg of methylone, 100 mg of MDMA, and a placebo. The variables included physiological effects (blood pressure, heart rate, oral temperature, pupil diameter), subjective effects using visual analog scales (VAS), the short form of the Addiction Research Center Inventory (ARCI), the Evaluation of Subjective Effects of Substances with Abuse Potential questionnaire (VESSPA-SSE), and the Sensitivity to Drug Reinforcement Questionnaire (SDRQ), and psychomotor performance (Maddox wing, psychomotor vigilance task). We observed that methylone could significantly increase blood pressure and heart rate and induce pleasurable effects, such as stimulation, euphoria, wellbeing, enhanced empathy, and altered perception. Methylone exhibited an effect profile similar to MDMA, with a faster overall onset and earlier disappearance of subjective effects. These results suggest that abuse potential of methylone is comparable to that of MDMA in humans. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT05488171; Identifier: NCT05488171.

6.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498963

ABSTRACT

The aim of this study is to define, for the first time, human methylone and HMMC plasma pharmacokinetics following controlled administration of 50-200 mg methylone to 12 male volunteers. A new LC-MS/MS method was validated to quantify methylone, MDMA, and their metabolites in plasma. The study was a randomized, cross-over, double-blinded and placebo-controlled study, with a total of 468 plasma samples collected. First, 10 µL of MDMA-d5, MDA-d5 and methylone-d3 internal standards were added to 100 µL of plasma. Two mL of chloroform and ethyl acetate 9:1 (v/v) were then added, mixed well and centrifuged. The supernatant was fortified with 0.1 mL acidified methanol and evaporated under nitrogen. Samples were reconstituted with a mobile phase and injected into the LC-MS/MS instrument. The method was fully validated according to OSAC guidelines (USA). Methylone plasma concentrations increased in a dose-proportional manner, as demonstrated by the increasing maximum concentration (Cmax) and area under the curve of concentrations (AUC). Methylone Cmax values were reported as 153, 304, 355 and 604 ng/mL, AUC0-24 values were reported as 1042.8, 2441.2, 3524.4 and 5067.9 h·ng/mL and T1/2 values as 5.8, 6.4, 6.9 and 6.4 h following the 50, 100, 150 and 200 mg doses, respectively. Methylone exhibited rapid kinetics with a Tmax of 1.5 h for the 50 mg dose and 2 h approximately after all the other doses. HMMC exhibited faster kinetics compared to methylone, with a Cmax value that was 10-14-fold lower and an AUC0-24 value that was 21-29-fold lower. Methylone pharmacokinetics was linear across 50-200 mg oral doses in humans, unlike the previously described non-linear oral MDMA pharmacokinetics. An LC-MS/MS method for the quantification of methylone, MDMA and their metabolites in human plasma was achieved. Methylone exhibited linear pharmacokinetics in humans with oral doses of 50-200 mg.


Subject(s)
Methamphetamine , Tandem Mass Spectrometry , Humans , Male , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Methamphetamine/metabolism , Area Under Curve , Administration, Oral
7.
J Clin Med ; 11(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35207278

ABSTRACT

Introduction and objective: Assessing the abuse potential of new substances with central nervous system activity is essential for preventing possible risks of misuse and addiction. The same methodology is recommended for the evaluation of the abuse potential of recreational drugs. This systematic review aims to assess the pharmacological effects related to the abuse potential and pharmacokinetics of cathinones, which are evaluated in both experimental and prospective observational studies in humans. Materials and Methods: A systematic search of the published literature was conducted to retrieve studies that had administered cathinone, mephedrone, methylone, and diethylpropion to evaluate their acute pharmacological effects related to abuse potential. Results: The search yielded 583 results, 18 of which were included to assess the abuse potential of cathinone (n = 5), mephedrone (n = 7), methylone (n = 1), and diethylpropion (n = 5). All four substances induce stimulant and euphorigenic effects that resemble those of amphetamines and MDMA, and their different intensities may be associated with varying levels of abuse potential. Conclusions: Cathinone, mephedrone, methylone, and diethylpropion induce a range of desirable and reinforcing effects that may, to some extent, result in abuse potential. Further investigation is needed to minimize and prevent their impact on society and public health.

8.
Pharmaceutics ; 13(10)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34683828

ABSTRACT

In recent years, the consumption of energy drinks (EDs) has become increasingly popular, especially among adolescents. Caffeine, a psychostimulant, is the main compound of EDs which also contain other substances with pharmacological effects. This review aims to compile current evidence concerning the potential interactions between EDs, medicines, and drugs of abuse as they are frequently consumed in combination. The substances involved are mainly substrates, inductors or inhibitors of CYP1A2, psychostimulants, alcohol and other depressant drugs. Furthermore, intoxications reported with EDs and other substances have also been screened to describe acute toxicity. The results of our review show that the consumption of both EDs alone and in combination is not as safe as previously thought. Health professionals and consumers need to be aware of the potential interactions of these drinks as well as the absence of long-term safety data.

9.
Front Pharmacol ; 12: 705643, 2021.
Article in English | MEDLINE | ID: mdl-34489699

ABSTRACT

Synthetic cannabinoids (SCs) are a group of new psychoactive drugs used recreationally with potential health risks. They are monitored by the EU Early Warning System since 2010 due to severe adverse effects on consumers. JWH-122 and JWH-210 are naphthoylindole SCs and potent cannabinoid receptor CB1 and CB2 agonists. Information about the effects of SCs usually is available from intoxication cases and surveys, and few studies on humans after controlled administration or observational/naturalistic studies using standardized measures of cardiovascular and subjective effects are available. The aim of this study was to evaluate the acute pharmacological effects of JWH-122 and JWH-210 recreational consumption in a 4 h observational study and assess their disposition in oral fluid (OF). Sixteen volunteers self-administered 1 mg dose of JWH-122 (n = 8) or 2.25 mg mean dose of JWH-210 (range 2-3 mg, n = 8) by inhalation (smoking). Physiological parameters including blood pressure (systolic and diastolic), heart rate (HR), and cutaneous temperature were measured. A set of visual analog scales, the 49-item short-form version of the Addiction Research Center Inventory (ARCI), and the Evaluation of the Subjective Effects of Substances with Abuse Potential (VESSPA-SSE) were used for the evaluation of subjective effects. OF was collected at baseline and at 10, 20, and 40 min and 1, 2, 3, and 4 h after self-administration. Statistically significant increases in systolic blood pressure (SBP), diastolic blood pressure (DBP), and HR were observed after JWH-122 self-administration but not after JWH-210 self-administration. JWH-210 self-administration produced significant changes in subjective drug effects, similar to those induced by THC (intensity, high, good effects, and hunger). The subjective effects following JWH-122 consumption were minimal. The maximal effects were mostly observed 20 min after intake. JWH-122 and JWH 210 OF concentration reached a peak 20 min after administration and could not be detected after 3 h. The results demonstrated a different pattern of effects of these two SCs. Due to the limitations of our observational study, further research with a larger sample and controlled studies are needed to better define the acute pharmacological effect and health risk profile of JWH-122 and JWH-210.

10.
Biology (Basel) ; 10(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34440023

ABSTRACT

Considered the ß-keto analogue of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), 3,4-Methylenedioxymethcathinone (methylone) is a synthetic cathinone. Over the years, methylone has been used as a substitute for conventional psychostimulants, such as MDMA. To date, little is known about the human pharmacology of methylone; the only available information has been provided by surveys or published intoxication reports. In the present observational-naturalistic study, we evaluate the acute subjective and physiological effects of methylone after oral self-administration in comparison to MDMA in healthy poly-drug users. Fourteen participants (10 males, 4 females) selected their single oral doses of methylone from 100 to 300 mg (n = 8, mean dose 187.5 mg) or MDMA from 75 to 100 mg (n = 6, mean dose 87.5 mg) based on their experience. Study variables were assessed at 0, 1, 2, and 4 h (h) and included vital signs (non-invasive blood pressure, heart rate, cutaneous temperature) and subjective effects using visual analogue scales (VAS), the 49-item Addiction Research Centre Inventory (ARCI) short form, and the Evaluation of the Subjective Effects of Substances with Abuse Potential (VESSPA-SSE) questionnaire. Additionally, oral fluid concentrations of methylone and MDMA were determined. Acute pharmacological effects produced by methylone followed the prototypical psychostimulant and empathogenic profile associated with MDMA, although they were less intense. Methylone concentrations in oral fluid can be considered a useful biomarker to detect acute exposure in oral fluid. Oral fluid concentrations of MDMA and methylone peaked at 2 h and concentrations of MDMA were in the range of those previously described in controlled studies. Our results demonstrate that the potential abuse liability of methylone is similar to that of MDMA in recreational subjects.

11.
Biology (Basel) ; 10(4)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805054

ABSTRACT

Synthetic cannabinoids (SCs) are one of the most frequent classes of new psychoactive substances monitored by the EU Early Warning System and World Health Organization. UR-144 is a SC with a relative low affinity for the CB1 receptor with respect to that for the CB2 receptor. As with other cannabinoid receptor agonists, it has been monitored by the EU Early Warning System since 2012 for severe adverse effects on consumers. Since data for UR-144 human pharmacology are very limited, an observational study was carried out to evaluate its acute pharmacological effects following its administration using a cannabis joint as term of comparison. Disposition of UR-144 and delta-9-tetrahydrocannibinol (THC) was investigated in oral fluid. Sixteen volunteers smoked a joint prepared with tobacco and 1 or 1.5 mg dose of UR-144 (n = 8) or cannabis flowering tops containing 10 or 20 mg THC (n = 8). Physiological variables including systolic and diastolic blood pressure, heart rate and cutaneous temperature were measured. A set of Visual Analog Scales (VAS), the Addiction Research Centre Inventory (ARCI)-49-item short form version and the Evaluation of the Subjective Effects of Substances with Abuse Potential (VESSPA-SSE) were administered to evaluate subjective effects. Oral fluid was collected at baseline, 10, 20, 40 min and 1, 2, 3 and 4 h after smoking, for UR-144 or THC concentration monitoring. Results showed significant statistical increases in both systolic and diastolic blood pressure and heart rate after both UR-144 and cannabis smoking. Both substances produced an increase in VAS related to stimulant-like and high effects, but scores were significantly higher after cannabis administration. No hallucinogenic effects were observed. Maximal oral fluid UR-144 and THC concentrations appeared at 20 and 10 min after smoking, respectively. The presence of UR-144 in oral fluid constitutes a non-invasive biomarker of SC consumption. The results of this observational study provide valuable preliminary data of the pharmacological effects of UR-144, showing a similar profile of cardiovascular effects in comparison with THC but lower intensity of subjective effects. Our results have to be confirmed by research in a larger sample to extensively clarify pharmacological effects and the health risk profile of UR-144.

12.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451073

ABSTRACT

Inhalation by vaporization is a useful application mode for medical cannabis. In this study, we present the disposition of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors, and their metabolites in serum, oral fluid, and urine together with the acute pharmacological effects in 14 healthy individuals treated with vaporized medical cannabis. THC and CBD peaked firstly in serum and then in oral fluid, with higher concentrations in the first biological matrices and consequent higher area under the curve AUCs. Acidic precursors Δ-9-tetrahydrocannabinolic acid A (THCA) and cannabidiolic acid (CBDA) showed a similar time course profile but lower concentrations due to the fact that vaporization partly decarboxylated these compounds. All THC and CBD metabolites showed a later onset with respect to the parent compounds in the absorption phase and a slower decrease to baseline. In agreement with serum kinetics, THC-COOH-GLUC and 7-COOH-CBD were the significantly most excreted THC and CBD metabolites. The administration of vaporized medical cannabis induced prototypical effects associated with the administration of cannabis or THC in humans, with a kinetic trend overlapping that of parent compounds and metabolites in serum. The pharmacokinetics of cannabinoids, their precursors, and their metabolites in biological fluids of individuals treated with vaporized medical cannabis preparations showed a high interindividual variability as in the case of oral medical cannabis decoction and oil. Inhaled medical cannabis was absorbed into the organism earlier than decoction and oil. Cannabinoids reached higher systemic concentrations, also due to the fact that the acid precursors decarboxylated to parent cannabinoids at high temperatures, and consequently, the physiological and subjective effects occurred earlier and resulted with higher intensity. No serious adverse effects were observed.

13.
Phytother Res ; 35(3): 1646-1657, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33155722

ABSTRACT

Recently, several countries authorized the use of cannabis flowering tops (dried inflorescences) with a standardized amount of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and their acidic precursors [Δ-9-tetrahydrocannabinolic acid A (THCA-A) and cannabidiolic acid (CBDA)] to treat neurogenic pain. We studied the acute pharmacological effects and disposition of cannabinoids and their metabolites in serum, oral fluid, sweat patch and urine of 13 healthy individuals treated with medical cannabis decoction and oil. Cannabinoids and their metabolites were quantified by ultrahigh performance tandem mass spectrometry. Even if the oil contained a significantly higher amount of THC, the absorption of THC and its metabolites were similar in both herbal preparations. Conversely, whereas oil contained a significantly higher amount of CBD and a lower amount of CBDA, absorption was significantly higher after decoction intake. Only cannabinoids present in both herbal preparations (THC, CBD, THCA-A and CBDA) were found in oral fluid, due to the higher acidity compared with that of serum. THC metabolites urinary excretion was always higher after decoction administration. Decoction induced greater feeling of hunger and drowsiness than oil preparation. Pharmacokinetics of cannabinoids, their precursors and their metabolites in biological fluids of individuals treated with cannabis decoction and oil showed a high interindividual variability. The aqueous preparation was generally better absorbed than the oil, even if it contained a minor amount of THC, THCA-A and CBD.


Subject(s)
Cannabinoids/therapeutic use , Cannabis/chemistry , Medical Marijuana , Pharmaceutical Preparations/chemistry , Sweat/chemistry , Adult , Cannabinoids/pharmacology , Female , Humans , Male , Medical Marijuana/blood , Medical Marijuana/pharmacology , Medical Marijuana/therapeutic use , Medical Marijuana/urine , Plant Extracts/blood , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/urine , Young Adult
14.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322849

ABSTRACT

The use of cannabis flowering tops with standardized amounts of active phytocannabinoids was recently authorized in several countries to treat several painful pathological conditions. The acute pharmacological effects and disposition of Δ-9-tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors and THC metabolites after oil and decoction administration have been already described. In this study, the disposition of CBD metabolites: 7-carboxy-cannabidiol (7-COOH-CBD), 7-hydroxycannabidiol (7-OH-CBD), 6-α-hydroxycannabidiol (6-α-OH-CBD), and 6-ß-hydroxycannabidiol (6-ß-OH-CBD) in the serum and urine of healthy volunteers was presented. Thirteen healthy volunteers were administered 100 mL of cannabis decoction in the first experimental session and, after 15 days of washout, 0.45 mL of oil. Serum and urine samples were collected at different time points, and the CBD metabolites were quantified by ultra-high-performance liquid chromatography-tandem mass spectrometry. The most abundant serum metabolite was 7-COOH-CBD, followed by 7-OH-CBD, 6-ß-OH-CBD, and6-α-OH-CBD, after decoction and oil. Both 7-OH-CBD and the 6-α-OH-CBD showed similar pharmacokinetic properties following administration of both cannabis preparations, whereas 7-COOH and 6-α-OH-CBD displayed a significant higher bioavailability after decoction consumption. All CBD metabolites were similarly excreted after oil and decoction intake apart from 6-α-OH-CBD, which had a significantly lower excretion after oil administration. The pharmacokinetic characterization of CBD metabolites is crucial for clinical practice since the cannabis herbal preparations are increasingly used for several pathological conditions.

15.
Int J Mol Sci ; 21(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321929

ABSTRACT

The consumption of synthetic cannabinoids (SCs) has significantly increased in the last decade and the analysis of SCs and their metabolites in human specimens is gaining interest in clinical and forensic toxicology. A pilot study has been carried out using a combination of an initial last generation gas chromatography-mass spectrometry (GC-MS) screening method for the determination of JWH-122, JWH-210, UR-144) in oral fluid (OF) of consumers and an ultra-high performance liquid chromatography high resolution mass spectrometry (UHPLC-HRMS) confirmatory method for the quantification of the parent compounds and their metabolites in the same biological matrix. OF samples were simply liquid-liquid extracted before injecting in both chromatographic systems. The developed methods have been successfully validated and were linear from limit of quantification (LOQ) to 50 ng/mL OF. Recovery of analytes was always higher than 70% and matrix effect always lower than 15% whereas intra-assay and inter-assay precision and accuracy were always better than 16%. After smoking 1 mg JWH-122 or UR-144 and 3 mg JWH-210, maximum concentration of 4.00-3.14 ng/mL JWH-122, 8.10-7.30 ng/mL JWH-210 ng/mL and 7.40 and 6.81 ng/mL UR-144 were measured by GC-MS and UHPLC-HRMS respectively at 20 min after inhalation. Metabolites of JWH 122 and 210 were quantified in OF by UHPLC-HRMS, while that of UR144 was only detectable in traces. Our results provide for the first time information about disposition of these SCs and their metabolites in consumers OF. Last generation GC-MS has proven useful tool to identify and quantify parent SCs whereas UHPLC-HRMS also confirmed the presence of SCs metabolites in the OF of SCs consumers.


Subject(s)
Cannabinoids/pharmacokinetics , Indoles/pharmacokinetics , Naphthalenes/pharmacokinetics , Saliva/metabolism , Adult , Cannabinoids/administration & dosage , Cannabinoids/analysis , Chromatography, Liquid , Female , Humans , Indoles/administration & dosage , Indoles/analysis , Male , Marijuana Smoking/metabolism , Mass Spectrometry , Mouth Mucosa/metabolism , Naphthalenes/administration & dosage , Naphthalenes/analysis , Saliva/chemistry
16.
Medicina (Kaunas) ; 56(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585912

ABSTRACT

BACKGROUND AND OBJECTIVE: Changes in cannabis legalization regimes in several countries have influenced the diversification of cannabis use. There is an ever-increasing number of cannabis forms available, which are gaining popularity for both recreational and therapeutic use. From a therapeutic perspective, oral cannabis containing Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is a promising route of administration but there is still little information about its pharmacokinetics (PK) effects in humans. The purpose of this systematic review is to provide a general overview of the available PK data on cannabis and THC after oral administration. METHODS: A search of the published literature was conducted using the PubMed database to collect available articles describing the PK data of THC after oral administration in humans. RESULTS: The literature search yielded 363 results, 26 of which met our inclusion criteria. The PK of oral THC has been studied using capsules (including oil content), tablets, baked goods (brownies and cookies), and oil and tea (decoctions). Capsules and tablets, which mainly correspond to pharmaceutical forms, were found to be the oral formulations most commonly studied. Overall, the results reflect the high variability in the THC absorption of oral formulations, with delayed peak plasma concentrations compared to other routes of administration. CONCLUSIONS: Oral THC has a highly variable PK profile that differs between formulations, with seemingly higher variability in baked goods and oil forms. Overall, there is limited information available in this field. Therefore, further investigations are required to unravel the unpredictability of oral THC administration to increase the effectiveness and safety of oral formulations in medicinal use.


Subject(s)
Dronabinol/analogs & derivatives , Dronabinol/therapeutic use , Nitrogen Mustard Compounds/therapeutic use , Administration, Oral , Dronabinol/pharmacology , Drug Compounding/methods , Humans , Nitrogen Mustard Compounds/pharmacology
17.
Expert Opin Drug Metab Toxicol ; 16(5): 357-369, 2020 May.
Article in English | MEDLINE | ID: mdl-32228243

ABSTRACT

Introduction: MDMA (3,4-methylenedioxymethamphetamine), a synthetic ring-substituted amphetamine, has become one of the most widely used recreational psychostimulant drugs in the world. Among recreational ecstasy/MDMA users, polydrug use is a phenomenon whose common purpose is to experience the synergistic effect of the combined drugs, moderate MDMA effects, prevent potential toxicity, enhance a high or come down from a high from other drugs, or simply to treat existing medical conditions. Thus, MDMA-drug interactions (MDMA-DIs) lead to a higher risk of acute and life-threatening MDMA toxicity.Areas covered: This article provides an overview of the MDMA-DIs with pharmaceuticals and drugs of abuse. In addition, available evidence is summarized along with clinical recommendations. Finally, the increasing importance of MDMA-DIs is highlighted.Expert opinion: There is a reduced number of published MDMA-DIs studies and scarce clinically significant MDMA-DIs documented in the literature. Experimental evidence points out the relevance of MDMA-DI's when MDMA is co-administered with pharmaceuticals that are metabolized by the CYP2D6 due to MDMA inhibitory action and in the case of repeated MDMA administration (MDMA-MDMAIs).


Subject(s)
Hallucinogens/administration & dosage , Illicit Drugs/toxicity , N-Methyl-3,4-methylenedioxyamphetamine/administration & dosage , Animals , Cytochrome P-450 CYP2D6/metabolism , Drug Interactions , Drug Synergism , Hallucinogens/toxicity , Humans , N-Methyl-3,4-methylenedioxyamphetamine/toxicity , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/metabolism , Substance-Related Disorders/epidemiology
18.
Talanta ; 209: 120537, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31892011

ABSTRACT

Monitoring pharmacological active compounds in pharmaceutical preparations of medical cannabis and in conventional and non-conventional biological matrices of treated individuals use requires both a wide linear range and sensitive detection. We have developed and validated a fast and sensitive method using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) for analysis of Δ-9-tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors Δ-9-tetrahydrocannabinolic acid A (THCA-A) and cannabidiolic acid (CBDA) and some major metabolites of THC such as 11-nor-9-carboxy-THC (THC-COOH), 11-hydroxy-THC (11-OH-THC), Δ-9-THC-Glucuronide (THC-GLUC) and THC-COOH-Glucuronide (THC-COOH-GLUC) in conventional (whole blood and urine) and non-conventional (oral fluid and sweat) of individual treated with medical cannabis preparation. Specifically, THC, THCA-A, CBD and CBD-A were determined in cannabis decoction and oil prepared to treat individuals. The method used positive electrospray ionization (ESI) mode to reach the sensitivity needed to detect minimal amounts of analytes under investigations exposure with limits of quantification ranging from 0.2 to 0.5 ng per milliliter (ng/mL) or ng per patch in case of collected sweat. The validation results indicated this method was accurate (average inter/intra-day error, <10%), precise (inter/intra-day imprecision, <10%), and fast (10 min run time). In addition, time-consuming sample preparation was avoided applying dilute and shoot procedure, meeting the needs for potential large-scale population studies. The analysis of real samples demonstrated a pharmacokinetics of cannabinoids, their precursors and their metabolites dependent from quantity of carboxylated and decarboxylated compounds in pharmaceutical preparations.


Subject(s)
Cannabinoids/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Medical Marijuana/pharmacokinetics , Tandem Mass Spectrometry/methods , Cannabinoids/administration & dosage , Cannabinoids/analysis , Cannabinoids/metabolism , Chromatography, High Pressure Liquid/economics , Humans , Limit of Detection , Medical Marijuana/administration & dosage , Medical Marijuana/analysis , Medical Marijuana/metabolism , Saliva/metabolism , Sweat/metabolism , Tandem Mass Spectrometry/economics , Time Factors
20.
Med Clin (Barc) ; 152(2): 79-80, 2019 01 18.
Article in English, Spanish | MEDLINE | ID: mdl-29887177
SELECTION OF CITATIONS
SEARCH DETAIL
...