Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cytoskeleton (Hoboken) ; 76(1): 92-103, 2019 01.
Article in English | MEDLINE | ID: mdl-30070077

ABSTRACT

Septins constitute a novel class of cytoskeletal proteins. Budding yeast septins self-assemble into non-polar filaments bound to the inner plasma membrane through specific interactions with l-α-phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). Biomimetic in vitro assays using giant unilamellar vesicles (GUVs) are relevant tools to dissect and reveal insights in proteins-lipids interactions, membrane mechanics and curvature sensitivity. GUVs doped with PI(4,5)P2 are challenging to prepare. This report is dedicated to optimize the incorporation of PI(4,5)P2 lipids into GUVs by probing the proteins-PI(4,5)P2 GUVs interactions. We show that the interaction between budding yeast septins and PI(4,5)P2 is more specific than using usual reporters (phospholipase Cδ1). Septins have thus been chosen as reporters to probe the proper incorporation of PI(4,5)P2 into giant vesicles. We have shown that electro-formation on platinum wires is the most appropriate method to achieve an optimal septin-lipid interaction resulting from an optimal PI(4,5)P2 incorporation for which, we have optimized the growth conditions. Finally, we have shown that PI(4,5)P2 GUVs have to be used within a few hours after their preparation. Indeed, over time, PI(4,5)P2 is expelled from the GUV membrane and the PI(4,5)P2 concentration in the bilayer decreases.


Subject(s)
Cell Membrane/metabolism , Cytoskeleton/metabolism , Unilamellar Liposomes/metabolism , Chromatography, Liquid , Mass Spectrometry
2.
Dev Cell ; 44(1): 73-86.e4, 2018 Jan 08.
Article in English | MEDLINE | ID: mdl-29316443

ABSTRACT

Cytosolic lipid droplets (LDs) are the main storage organelles for metabolic energy in most cells. They are unusual organelles that are bounded by a phospholipid monolayer and specific surface proteins, including key enzymes of lipid and energy metabolism. Proteins targeting LDs from the cytoplasm often contain amphipathic helices, but how they bind to LDs is not well understood. Combining computer simulations with experimental studies in vitro and in cells, we uncover a general mechanism for targeting of cytosolic proteins to LDs: large hydrophobic residues of amphipathic helices detect and bind to large, persistent membrane packing defects that are unique to the LD surface. Surprisingly, amphipathic helices with large hydrophobic residues from many different proteins are capable of binding to LDs. This suggests that LD protein composition is additionally determined by mechanisms that selectively prevent proteins from binding LDs, such as macromolecular crowding at the LD surface.


Subject(s)
Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Animals , Cells, Cultured , Drosophila melanogaster/growth & development , Hydrophobic and Hydrophilic Interactions , Male , Phospholipids/metabolism , Protein Conformation , Protein Transport
3.
J Cell Sci ; 132(4)2018 04 19.
Article in English | MEDLINE | ID: mdl-29361534

ABSTRACT

Dynamin-related protein 1 (Drp1), an 80 kDa mechanochemical GTPase of the dynamin superfamily, is required for mitochondrial division in mammals. Despite the role of Drp1 dysfunction in human disease, its molecular mechanism remains poorly understood. Here, we examined the effect of Drp1 on membrane curvature using tubes pulled from giant unilamellar vesicles (GUVs). We found that GTP promoted rapid rearrangement of Drp1 from a uniform distribution to discrete foci, in line with the assembly of Drp1 scaffolds at multiple nucleation sites around the lipid tube. Polymerized Drp1 preserved the membrane tube below the protein coat, also in the absence of pulling forces, but did not induce spontaneous membrane fission. Strikingly, Drp1 polymers stabilized membrane curvatures similar to those of constricted mitochondria against pressure changes. Our findings support a new model for mitochondrial division whereby Drp1 mainly acts as a scaffold for membrane curvature stabilization, which sets it apart from other dynamin homologs.


Subject(s)
GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Cardiolipins/metabolism , Cytokinesis/physiology , Dynamins , Escherichia coli/genetics , Escherichia coli/metabolism , GTP Phosphohydrolases/genetics , Guanosine Triphosphate/metabolism , Microtubule-Associated Proteins/genetics , Mitochondrial Proteins/genetics , Polymerization , Protein Multimerization/physiology
4.
J Vis Exp ; (130)2017 12 07.
Article in English | MEDLINE | ID: mdl-29286431

ABSTRACT

The reshaping of the cell membrane is an integral part of many cellular phenomena, such as endocytosis, trafficking, the formation of filopodia, etc. Many different proteins associate with curved membranes because of their ability to sense or induce membrane curvature. Typically, these processes involve a multitude of proteins making them too complex to study quantitatively in the cell. We describe a protocol to reconstitute a curved membrane in vitro, mimicking a curved cellular structure, such as the endocytic neck. A giant unilamellar vesicle (GUV) is used as a model of a cell membrane, whose internal pressure and surface tension are controlled with micropipette aspiration. Applying a point pulling force on the GUV using optical tweezers creates a nanotube of high curvature connected to a flat membrane. This method has traditionally been used to measure the fundamental mechanical properties of lipid membranes, such as bending rigidity. In recent years, it has been expanded to study how proteins interact with membrane curvature and the way they affect the shape and the mechanics of membranes. A system combining micromanipulation, microinjection, optical tweezers, and confocal microscopy allows measurement of membrane curvature, membrane tension, and the surface density of proteins, concurrently. From these measurements, many important mechanical and morphological properties of the protein-membrane system can be inferred. In addition, we lay out a protocol of creating GUVs in the presence of physiological salt concentration, and a method of quantifying the surface density of proteins on the membrane from fluorescence intensities of labeled proteins and lipids.


Subject(s)
Membrane Lipids/chemistry , Nanotubes/chemistry , Unilamellar Liposomes/chemistry , Membrane Lipids/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism
5.
Nat Commun ; 8: 15839, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28643776

ABSTRACT

Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution microscopy approaches we unveil the presence of an actomyosin cable encircling TEMs. We develop a theoretical cellular dewetting framework to interpret TEM physical parameters that are quantitatively determined by laser ablation experiments. This establishes the critical role of ezrin and non-muscle myosin II (NMII) in the progressive implementation of line tension. Mechanistically, fluorescence-recovery-after-photobleaching experiments point for the upstream role of ezrin in stabilizing actin filaments at the edges of TEMs, thereby favouring their crosslinking by NMIIa. Collectively, our findings ascribe to ezrin and NMIIa a critical function of enhancing line tension at the cell boundary surrounding the TEMs by promoting the formation of an actomyosin ring.


Subject(s)
Actomyosin/metabolism , Cytoskeletal Proteins/metabolism , Nonmuscle Myosin Type IIA/metabolism , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Actomyosin/chemistry , Actomyosin/genetics , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Human Umbilical Vein Endothelial Cells/chemistry , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Nonmuscle Myosin Type IIA/chemistry , Nonmuscle Myosin Type IIA/genetics , Surface Tension
6.
Proc Natl Acad Sci U S A ; 113(40): 11226-11231, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27655892

ABSTRACT

Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex subcellular structures, and many other cellular phenomena. They form 3D assemblies that act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we use various experimental, theoretical, and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube's length. Our work implies that the nature of local protein-membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30-40% of a tube's surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes.


Subject(s)
Cell Membrane/chemistry , Membrane Proteins/chemistry , Nanotubes/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , Calibration , Computer Simulation , Fluorescence , Lipids/chemistry , Molecular Dynamics Simulation , Protein Domains , Protein Structure, Secondary , Structural Homology, Protein , Surface Properties , X-Rays
7.
Philos Trans A Math Phys Eng Sci ; 374(2072)2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27298443

ABSTRACT

In vesicular transport pathways, membrane proteins and lipids are internalized, externalized or transported within cells, not by bulk diffusion of single molecules, but embedded in the membrane of small vesicles or thin tubules. The formation of these 'transport carriers' follows sequential events: membrane bending, fission from the donor compartment, transport and eventually fusion with the acceptor membrane. A similar sequence is involved during the internalization of drug or gene carriers inside cells. These membrane-shaping events are generally mediated by proteins binding to membranes. The mechanisms behind these biological processes are actively studied both in the context of cell biology and biophysics. Bin/amphiphysin/Rvs (BAR) domain proteins are ideally suited for illustrating how simple soft matter principles can account for membrane deformation by proteins. We review here some experimental methods and corresponding theoretical models to measure how these proteins affect the mechanics and the shape of membranes. In more detail, we show how an experimental method employing optical tweezers to pull a tube from a giant vesicle may give important quantitative insights into the mechanism by which proteins sense and generate membrane curvature and the mechanism of membrane scission.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.


Subject(s)
Cell Membrane , Lipid Bilayers/chemistry , Membrane Proteins , Cell Membrane/chemistry , Cell Membrane/physiology , Endocytosis , Membrane Proteins/chemistry , Membrane Proteins/physiology , Nanotubes , Protein Structure, Tertiary
8.
Nat Commun ; 6: 8529, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26469246

ABSTRACT

BAR domain proteins contribute to membrane deformation in diverse cellular processes. The inverted-BAR (I-BAR) protein IRSp53, for instance, is found on the inner leaflet of the tubular membrane of filopodia; however its role in the formation of these structures is incompletely understood. Here we develop an original assay in which proteins are encapsulated in giant unilamellar vesicles connected to membrane nanotubes. Our results demonstrate that I-BAR dimers sense negative membrane curvature. Experiment and theory reveal that the I-BAR displays a non-monotonic sorting with curvature, and expands the tube at high imposed tension while constricting it at low tension. Strikingly, at low protein density and tension, protein-rich domains appear along the tube. This peculiar behaviour is due to the shallow intrinsic curvature of I-BAR dimers. It allows constriction of weakly curved membranes coupled to local protein enrichment at biologically relevant conditions. This might explain how IRSp53 contributes in vivo to the initiation of filopodia.


Subject(s)
Cell Membrane/physiology , Nerve Tissue Proteins/metabolism , Cell Line, Tumor , Humans , Pseudopodia/physiology
9.
Phys Chem Chem Phys ; 17(24): 15589-97, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-25824255

ABSTRACT

Alpha-synuclein (AS) is a synaptic protein that is directly involved in Parkinson's disease due to its tendency to form protein aggregates. Since AS aggregation can be dependent on the interactions between the protein and the cell plasma membrane, elucidating the membrane binding properties of AS is of crucial importance to establish the molecular basis of AS aggregation into toxic fibrils. Using a combination of in vitro reconstitution experiments based on Giant Unilamellar Vesicles (GUVs), confocal microscopy and all-atom molecular dynamics simulations, we have investigated the membrane binding properties of AS, with a focus on the relative contribution of hydrophobic versus electrostatic interactions. In contrast with previous observations, we did not observe any binding of AS to membranes containing the ganglioside GM1, even at relatively high GM1 content. AS, on the other hand, showed a stronger affinity for neutral flat membranes consisting of methyl-branched lipids. To rationalize these results, we used all-atom molecular dynamics simulations to investigate the influence of methyl-branched lipids on interfacial membrane properties. We found that methyl-branched lipids promote the membrane adsorption of AS by creating shallow lipid-packing defects to a larger extent than polyunsaturated and monounsaturated lipids. Our findings suggest that methyl-branched lipids may constitute a remarkably adhesive substrate for peripheral proteins that adsorb on membranes via hydrophobic insertions.


Subject(s)
Lipid Bilayers/chemistry , Lipids/chemistry , alpha-Synuclein/chemistry , Adsorption , Molecular Dynamics Simulation , Surface Properties
10.
Nat Commun ; 5: 3624, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24709651

ABSTRACT

Myosin 1b is a single-headed membrane-associated motor that binds to actin filaments with a catch-bond behaviour in response to load. In vivo, myosin 1b is required to form membrane tubules at both endosomes and the trans-Golgi network. To establish the link between these two fundamental properties, here we investigate the capacity of myosin 1b to extract membrane tubes along bundled actin filaments in a minimal reconstituted system. We show that single-headed non-processive myosin 1b can extract membrane tubes at a biologically relevant low density. In contrast to kinesins we do not observe motor accumulation at the tip, suggesting that the underlying mechanism for tube formation is different. In our theoretical model, myosin 1b catch-bond properties facilitate tube extraction under conditions of increasing membrane tension by reducing the density of myo1b required to pull tubes.


Subject(s)
Actin Cytoskeleton/metabolism , Microtubules/metabolism , Myosin Type I/metabolism , trans-Golgi Network/metabolism , Endosomes/metabolism , Humans , Kinesins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...