Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1095449, 2023.
Article in English | MEDLINE | ID: mdl-37899837

ABSTRACT

Finger millet (Eluesine coracana L.) is gaining importance as a food crop with the increasing emphasis on nutritional aspects and drought resilience. However, the average productivity of the crop has stagnated at around 2,000 kg ha-1 in India. Recently released nutrient responsive high yielding varieties are reported to respond better to application of fertilizers/manures. Further, substitution of chemical fertilizers with organic manures to maintain sustainable yields and improve soil health is gaining attention in recent years. Therefore, identifying the appropriate rate and source of nutrition is important to enhance the productivity of finger millet while improving the soil health. A field experiment was conducted during two rainy seasons (July-November, 2018 and 2019) to study the response of finger millet varieties to chemical fertilizers and farmyard manure (FYM) on growth, yields, N use efficiency, N uptake and on soil properties. Two varieties MR-1 and MR-6 were tested with four nutrient management practices viz., unamended control, 100% recommended dose of fertilizers (RDF; 40-20-20 kg NPK ha-1), 50% RDF + 50% recommended dose of nitrogen (RDN) as FYM and 100% RDN as FYM. Among the varieties, MR-6 outperformed MR-1 in terms of growth, yield, N use efficiency and N uptake. The yield enhancement was up to 22.6% in MR-6 compared to MR-1 across the nutrient management practices. Substituting FYM completely or half of the fertilizer dose increased the growth and yield of finger millet compared to application of chemical fertilizers alone. Similarly, the average biomass yield, ears m-2, grain yield, total N uptake and N use efficiency in response to nutrient management practices followed the order of 100% RDN as FYM > 50% RDF + 50% RDN as FYM > 100% RDF. The soil organic carbon, available N, P, K, and S improved by 25.0, 12.9, 5.7, 6.1, and 22.6%, respectively in the plots under higher rate of FYM application (8 Mg ha-1) compared to plots under chemical fertilizers alone. We conclude that substituting chemical fertilizers either completely or by up to 50% with organic manures supplies adequate amounts of nutrients, improves the yield of finger millet, economic returns, and soil properties.

2.
Front Nutr ; 10: 1127970, 2023.
Article in English | MEDLINE | ID: mdl-37234556

ABSTRACT

Mineral and vitamin deficiencies together affect a greater number of human populations in the world than does protein malnutrition. Organic farming is reported to improve nutritional quality of food grains while also improving soil health. However, sufficient scientific information on several aspects of organic farming based on long-term studies is lacking particularly under rainfed conditions of India. The purpose of this study was to assess the long-term impact of organic and integrated production systems on crops yield and quality, economic returns and soil properties. The study was conducted with three crops, sunflower (Helianthus annuus L.), pigeonpea (Cajanus cajan L.), and greengram [Vigna radiata (L.) Wilczek] under three different production systems, control (use of chemical inputs alone), organic and integrated. The results of the 10-year study revealed that, the average production of integrated system was on par with organic management and recorded significantly higher pigeonpea equivalent yield (PEY) (827 kg ha-1) compared to control (chemical inputs) (748 kg ha-1). In general, the yield gap between organic and integrated production systems declined from fourth year for greengram and eighth year for sunflower, during the 10-year experimental period whereas the pigeonpea yield was similar under both production systems from first year. Plots under organic management had significantly lower bulk density (1.18 mg m-3), higher water holding capacity (38.72%) and porosity (53.79%) compared to integrated production system and control (chemical inputs). The soil organic C (SOC) content in the plots under organic production system was 32.6% more than the initial organic carbon of the soil (0.43%), with higher soil N (205.2 kg ha-1). Plots under integrated production system, however, had higher soil P (26.5 kg ha-1) compared with other treatments. The dehydrogenase activity (5.86 µg TPF g-1 soil h-1) and microbial biomass carbon (317.3 µg g-1 soil) content was higher in the plots under organic production system than under other systems. Organically produced pigeonpea and greengram seeds had similar protein content with that of integrated system, and higher K and micronutrient (Fe, Zn, Cu, and Mn) contents than other treatments. The results show the potential of organic production system in improving crop yields, soil properties and produce quality in semiarid rainfed areas.

3.
Front Plant Sci ; 14: 1124619, 2023.
Article in English | MEDLINE | ID: mdl-37223807

ABSTRACT

Maize productivity is significantly impacted by drought; therefore, improvement of drought tolerance is a critical goal in maize breeding. To achieve this, a better understanding of the genetic basis of drought tolerance is necessary. Our study aimed to identify genomic regions associated with drought tolerance-related traits by phenotyping a mapping population of recombinant inbred lines (RILs) for two seasons under well-watered (WW) and water-deficit (WD) conditions. We also used single nucleotide polymorphism (SNP) genotyping through genotyping-by-sequencing to map these regions and attempted to identify candidate genes responsible for the observed phenotypic variation. Phenotyping of the RILs population revealed significant variability in most of the traits, with normal frequency distributions, indicating their polygenic nature. We generated a linkage map using 1,241 polymorphic SNPs distributed over 10 chromosomes (chrs), covering a total genetic distance of 5,471.55 cM. We identified 27 quantitative trait loci (QTLs) associated with various morphophysiological and yield-related traits, with 13 QTLs identified under WW conditions and 12 under WD conditions. We found one common major QTL (qCW2-1) for cob weight and a minor QTL (qCH1-1) for cob height that were consistently identified under both water regimes. We also detected one major and one minor QTL for the Normalized Difference Vegetation Index (NDVI) trait under WD conditions on chr 2, bin 2.10. Furthermore, we identified one major QTL (qCH1-2) and one minor QTL (qCH1-1) on chr 1 that were located at different genomic positions to those identified in earlier studies. We found co-localized QTLs for stomatal conductance and grain yield on chr 6 (qgs6-2 and qGY6-1), while co-localized QTLs for stomatal conductance and transpiration rate were identified on chr 7 (qgs7-1 and qTR7-1). We also attempted to identify the candidate genes responsible for the observed phenotypic variation; our analysis revealed that the major candidate genes associated with QTLs detected under water deficit conditions were related to growth and development, senescence, abscisic acid (ABA) signaling, signal transduction, and transporter activity in stress tolerance. The QTL regions identified in this study may be useful in designing markers that can be utilized in marker-assisted selection breeding. In addition, the putative candidate genes can be isolated and functionally characterized so that their role in imparting drought tolerance can be more fully understood.

4.
Biology (Basel) ; 11(9)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36138809

ABSTRACT

The changing dynamics in the climate are the primary and important determinants of agriculture productivity. The effects of this changing climate on overall productivity in agriculture can be understood when we study the effects of individual components contributing to the changing climate on plants and crops. Elevated CO2 (eCO2) and drought due to high variability in rainfall is one of the important manifestations of the changing climate. There is a considerable amount of literature that addresses climate effects on plant systems from molecules to ecosystems. Of particular interest is the effect of increased CO2 on plants in relation to drought and water stress. As it is known that one of the consistent effects of increased CO2 in the atmosphere is increased photosynthesis, especially in C3 plants, it will be interesting to know the effect of drought in relation to elevated CO2. The potential of elevated CO2 ameliorating the effects of water deficit stress is evident from literature, which suggests that these two agents are brothers in arms protecting the plant from stress rather than partners in crime, specifically for water deficit when in isolation. The possible mechanisms by which this occurs will be discussed in this minireview. Interpreting the effects of short-term and long-term exposure of plants to elevated CO2 in the context of ameliorating the negative impacts of drought will show us the possible ways by which there can be effective adaption to crops in the changing climate scenario.

5.
Front Plant Sci ; 12: 659874, 2021.
Article in English | MEDLINE | ID: mdl-34276722

ABSTRACT

Intermittent drought and an incidence of grain mold disease are the two major constraints affecting sorghum production and productivity. The study aimed at developing drought-tolerant sorghum varieties possessing a high protein content and tolerance to grain mold with stable performance using additive main effects and multiplicative interaction (AMMI) and genotype and genotype × environment interaction (GGE) biplot methods. Systematic hybridization among the 11 superior landraces resulted in subsequent pedigree-based breeding and selection from 2010 to 2015 evolved 19 promising varieties of grains such as white, yellow, and brown pericarp grains. These grain varieties were evaluated for their adaptability and stability for yield in 13 rainfed environments and for possessing tolerance to grain mold in three hot spot environments. A variety of yellow pericarp sorghum PYPS 2 (3,698 kg/ha; 14.52% protein; 10.70 mg/100 g Fe) possessing tolerance to grain mold was identified as a stable variety by using both AMMI and GGE analyses. Four mega-environments were identified for grain yield and fodder yield. Sorghum varieties PYPS 2, PYPS 4, PYPS 8, and PYPS 11 were highly stable in E2 with a low grain mold incidence. Besides meeting the nutritional demand of smallholder farmers under dryland conditions, these varieties are suitable for enhancing sorghum productivity under the present climate change scenario.

6.
Sci Rep ; 9(1): 9114, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235727

ABSTRACT

Major nutrient management systems for rice-wheat cropping were compared for their potential to credit organic carbon (C) to the soil, its fractionation into active (very labile, VLc; labile, Lc) and passive (less labile, LLc; non-labile, NLc) pools, and crop yield responses. A ten-year long experiment was used to study effects of: (i) no inputs (Control, O), (ii) 100% inorganic fertilizers (F) compared to reduced fertilizers inputs (55%) supplemented with biomass incorporation from (iii) opportunity legume crop (Vigna radiata) (LE), (iv) green manure (Sesbania aculeata) (GM), (v) farmyard manure (FYM), (vi) wheat stubble (WS), and (vii) rice stubble (RS). Maximum C input to soil (as the percentage of C assimilated in the system) was in GM (36%) followed by RS (34%), WS (33%), LE (24%), and FYM (21%) compared to O (15%) and F (15%). Total C input to soil had a direct effect on soil C stock, soil C fractions (maximum in VLc and LLc), yet the responses in terms of biological yield were controlled by the quality of the biomass (C:N ratio, decomposition, etc.) incorporated. Legume-based biomass inputs accrued most benefits for soil C sequestration and biological productivity.


Subject(s)
Carbon/metabolism , Nutrients/metabolism , Oryza/growth & development , Oryza/metabolism , Soil/chemistry , Triticum/growth & development , Triticum/metabolism
7.
Interdiscip Sci ; 9(4): 528-539, 2017 Dec.
Article in English | MEDLINE | ID: mdl-26984814

ABSTRACT

Achaea janata granulovirus (AcjaGV), an insect virus belonging to Baculoviridae, infects semilooper, a widely distributed defoliating pest on castor beans (Ricinus communis L.) and several other plant hosts in India. The propagation and purification of the Hyderabad isolate AcjaGV were performed, granulin gene from this isolate was amplified, cloned and sequenced, and its homology with other known granulin genes was assessed. The 753-bp granulin ORF of AcjaGV encoded for a granulin protein of 250 amino acids with a molecular mass of 29.5 ± 0.7 kDa. This amino acid sequence exhibited significant homology with Spodoptera litura granulovirus (SpliGV) and other GVs infecting insects in the same Noctuidae family of Lepidoptera. Peptide analysis of granulin protein indicated close homology with that of SpliGV. Virtual RFLP patterns from in silico digestions of granulin gene of 18 granuloviruses mapped by 12 restriction enzymes were used for simulated digestions. Implications of the phylogenetic relationships of granulin nucleotide and deduced amino acid sequence are discussed. We have established the sequence identity of granulin gene of AcjaGV and characterized its protein product and the phylogenetic relationship with other known GVs. Our results indicate the presence of unique restriction sites for three restriction enzymes, and this can be used as a tool for identification of AcjaGV from various sources. This is the first report from the Indian subcontinent to describe the complete granulin gene of a GV isolated from A. janata.


Subject(s)
Baculoviridae/genetics , Granulovirus/genetics , Intercellular Signaling Peptides and Proteins/genetics , Phylogeny , Polymorphism, Restriction Fragment Length/genetics , Progranulins
8.
PLoS One ; 8(9): e75636, 2013.
Article in English | MEDLINE | ID: mdl-24086597

ABSTRACT

Temperature-driven development and survival rates of the mealybug, Phenacoccussolenopsis Tinsley (Hemiptera: Pseudococcidae) were examined at nine constant temperatures (15, 20, 25, 27, 30, 32, 35 and 40°C) on hibiscus (Hibiscusrosa -sinensis L.). Crawlers successfully completed development to adult stage between 15 and 35°C, although their survival was affected at low temperatures. Two linear and four nonlinear models were fitted to describe developmental rates of P. solenopsis as a function of temperature, and for estimating thermal constants and bioclimatic thresholds (lower, optimum and upper temperature thresholds for development: Tmin, Topt and Tmax, respectively). Estimated thresholds between the two linear models were statistically similar. Ikemoto and Takai's linear model permitted testing the equivalence of lower developmental thresholds for life stages of P. solenopsis reared on two hosts, hibiscus and cotton. Thermal constants required for completion of cumulative development of female and male nymphs and for the whole generation were significantly lower on hibiscus (222.2, 237.0, 308.6 degree-days, respectively) compared to cotton. Three nonlinear models performed better in describing the developmental rate for immature instars and cumulative life stages of female and male and for generation based on goodness-of-fit criteria. The simplified ß type distribution function estimated Topt values closer to the observed maximum rates. Thermodynamic SSI model indicated no significant differences in the intrinsic optimum temperature estimates for different geographical populations of P. solenopsis. The estimated bioclimatic thresholds and the observed survival rates of P. solenopsis indicate the species to be high-temperature adaptive, and explained the field abundance of P. solenopsis on its host plants.


Subject(s)
Adaptation, Biological/physiology , Hemiptera/growth & development , Hemiptera/physiology , Hibiscus/physiology , Animals , Climate , Female , Male , Nymph/growth & development , Nymph/physiology , Survival Rate , Temperature , Thermodynamics
9.
J Insect Sci ; 12: 141, 2012.
Article in English | MEDLINE | ID: mdl-23461741

ABSTRACT

Longicorn beetle, Acanthophorus rugiceps Gahan (Coleoptera: Cerambycidae), is reported for the first time as a confirmed host on physic nut, Jatropha curcas L. (Malpighiales: Euphorbiaceae), from India, causing extensive damage to roots. Plants of three years age and above were prone to attack by this pest. In a six year study beginning in 2005, about 11.3 percent of plants in a 16.25 acre physic nut plantation were severely damaged by A. rugiceps. Life stages of A. rugiceps, including egg, larvae, pupae, and adult, are described with a note on their habitat, biology, and behavior. Strategies to manage this pest on physic nut are discussed.


Subject(s)
Coleoptera/anatomy & histology , Coleoptera/physiology , Food Chain , Jatropha/growth & development , Animal Distribution , Animals , Coleoptera/growth & development , Feeding Behavior , Female , India , Insect Control , Larva/anatomy & histology , Larva/growth & development , Larva/physiology , Male , Ovum/growth & development , Ovum/physiology , Plant Roots , Population Dynamics , Pupa/anatomy & histology , Pupa/growth & development , Pupa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL