Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 268(Pt 1): 131830, 2024 May.
Article in English | MEDLINE | ID: mdl-38663698

ABSTRACT

Over the past decades, dynamic high-pressure treatment (DHPT) executed by high-pressure homogenization (HPH) or microfluidization (DHPM) technology has received humongous research attention for starch macromolecule modification. However, the studies on starch multi-level structure alterations by DHPT have received inadequate attention. Furthermore, no review comprehensively covers all aspects of DHPT, explicitly addressing the combined effects of both technologies (HPH or DHPM) on starch's structural and functional characteristics. Hence, this review focused on recent advancements concerning the influences of DHPT on the starch multi-level structure and techno-functional properties. Intense mechanical actions induced by DHPT, such as high shear and impact forces, hydrodynamic cavitation, instantaneous pressure drops, and turbulence, altered the multi-level structure of starch for a short duration. The DHPT reduces the starch molecular weight and degree of branching, destroys short-range ordered and long-range crystalline structure, and degrades lamellar structure, resulting in partial gelatinization of starch granules. These structural changes influenced their techno-functional properties like swelling power and solubility, freeze-thaw stability, emulsifying properties, retrogradation rate, thermal properties, rheological and pasting, and digestibility. Processing conditions such as pressure level, the number of passes, inlet temperature, chamber geometry used, starch types, and their concentration may influence the above changes. Moreover, dynamic high-pressure treatment could form starch-fatty acids/polyphenol complexes. Finally, we discuss the food system applications of DHPT-treated starches and flours, and some limitations.


Subject(s)
Pressure , Starch , Starch/chemistry , Solubility , Macromolecular Substances/chemistry , Molecular Weight
2.
Int J Food Sci ; 2024: 8846365, 2024.
Article in English | MEDLINE | ID: mdl-38433768

ABSTRACT

Engineering and flow properties of banana seed powder as a function of moisture content are important for processing, handling, packaging, and transport processes. The bulk density, tapped density, and porosity increased from 377.37 to 427.36 kg m-3, 622.08 to 746.33 kg m-3, and 38.99-43.74%, respectively, within the increasing moisture content range. The Hausner ratio (Hr) and Carr's compressibility index (CI) significantly (p < 0.05) increased with an increase in moisture content (6.16-19.56% db) of banana seed powder, whereas HR fell in the range of 1.4-2.0, indicating cohesive characteristics of banana seed powder. The angle of repose, angle of spatula, and angle of fall exhibited a linear increase, ranging from 40.6° to 49°, 33.4° to 39.4°, and 35.6° to 42.6°, respectively, with increasing moisture content. The static coefficient of friction was found to be highest for aluminium and glass surfaces and least for stainless steel. The water activity and swelling power of banana seed powder showed a significant increase, while the solubility and oil absorption capacity exhibited a significant decrease within the range of increasing moisture content. The thermal characteristics of wild banana seed powder, such as thermal conductivity (0.16 to 0.20 Wm-1 K-1) and volumetric specific heat (0.58 to 0.99 MJm-3 K-1), demonstrated an increasing trend as the moisture content increased. However, the thermal diffusivity showed a decrease from 0.31 to 0.19 (×10-6 m2s-1) with the increase in moisture content.

3.
Food Res Int ; 164: 112321, 2023 02.
Article in English | MEDLINE | ID: mdl-36737915

ABSTRACT

Fruit peels are rich source of bioactive compounds such as polyphenols, flavonoids, and antioxidants but are often discarded as waste due to limited pharmaceutical and nutraceutical applications. This study aimed to valorise pomegranate and citrus fruit peel into green synthesised silver nanoparticles (AgNPs) in order to modify cellulose-based wrapping material for prospective food packaging applications and propose an alternate and sustainable approach to replace polyethene based food packaging material. Four different concentrations of AgNO3 (0.5 mM, 1 mM, 2 mM, and 3 mM) were used for green synthesis of AgNPs from fruit peel bioactive, which were characterised followed by phytochemical analysis. Ultraviolet-Visible spectroscopy showed surface plasmon resonance at 420 nm, XRD analysis showed 2θ peak at 27.8°, 32.16°, 38.5°, 44.31°, 46.09°, 54.76°, 57.47°, 64.61° and 77.50° corresponding to (210), (122), (111), (200), (231), (142), (241), (220) and (311) plane of face centred cubic crystal structure of AgNPs. Fourier-transform infrared spectroscopy analysis of AgNPs green synthesised from pomegranate and kinnow peel extract showed a major peak at 3277, 1640 and 1250-1020 1/cm while a small peak at 2786 1/cm was observed in case of pomegranate peel extract which was negligible in AgNPs synthesized from kinnow peel extract. Particle sizes of AgNPs showed no statistically significant variance with p > 0.10 and thus, 2 mM was chosen for further experimentation and modification of cellulose based packaging material as it showed smallest average particle size. Zeta potential was observed to be nearly neutral with a partial negative strength due to presence of various phenolic compounds such as presence of gallic acid which was confirmed by ultrahigh performance liquid chromatography-photodiode array(UHPLC-PDA) detector. Thermal stability analysis of green synthesised AgNPs qualified the sterilisation conditions up to 100 °C. AgNPs green synthesized from both the peel extracts had higher polyphenolic content, antioxidant and radical scavenging activity as compared to peel extracts without treatment (p < 0.05). The cellulose based food grade packaging material was enrobed by green synthesised AgNPs. The characterisation of modified cellulose wrappers showed no significant difference in thickness of modified cellulose wrappers as compared with untreated cellulose wrapper (p > 0.42) while weight and grammage increased significantly in modified cellulose wrapper (p < 0.05). The colour values on CIE scale (L*, a* and b*) showed statistically significant increase in yellow and green colour (p < 0.05) for modified cellulose wrappers as compared to control wrapper. The oxygen permeability coefficient, water vapour permeability coefficient, water absorption capacity and water behaviour characteristics (water content, swelling degree and solubility) showed significant decrease (p < 0.05) for modified cellulose wrapper as compared to control wrapper. A uniform distribution and density of green synthesised AgNPs across cellulose wrapper matrix was observed through scanning electron microscopy (SEM) images with no significant aggregation, confirming successful enrobing and stable immobilisation of nanoparticles from cellulose matrix. A seven-day storage study of bread wrapped in modified and control cellulose wrappers showed delayed occurrence of microbial, yeast and mould count in bread packaged in modified cellulose wrappers and thus, resulting in shelf life extension of bread. The results are encouraging for the potential applications of modified cellulose wrappers to replace polyethene based food packaging.


Subject(s)
Fruit , Metal Nanoparticles , Fruit/chemistry , Silver/analysis , Bread , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Antioxidants/analysis , Cellulose/analysis , Life Expectancy , Polyethylenes/analysis
4.
Crit Rev Food Sci Nutr ; 63(26): 8275-8291, 2023.
Article in English | MEDLINE | ID: mdl-35380483

ABSTRACT

Drying is one of the oldest and most widely used methods for food preservation. It reduces the availability of moisture and inhibits microbial and enzymatic spoilage in food products. Foam mat drying is a mild drying technique used for semiliquid and liquid foodstuff. It is useful for heat-sensitive and sticky liquid food products. In this process, liquid food is converted into foam using surfactant additives, which can be a foaming agent or foam stabilizer. These additives are surface-active compounds of vegetative and animal origins. The foamed material is then convectively dried using hot air. The foam mat drying is an efficient and economical technique. With the emergence of different hybrid techniques such as foam mat freeze drying, foamed spray drying, foamed vacuum drying, and microwave assisted foam mat drying, the powders' physical, chemical, and functional properties have enhanced many folds. These strategies have shown very promising results in terms of cost and time efficiency in almost all the cases barring a few exceptions. This review article attempts to comprehensively summarize the mechanisms dictating the foam mat drying process, novel technological tools for modeling, mathematical and computational modeling, effects of various foaming additives, and various hybrid techniques employed to foam mat drying.


Subject(s)
Desiccation , Hot Temperature , Animals , Desiccation/methods , Freeze Drying , Surface-Active Agents , Excipients
5.
Crit Rev Food Sci Nutr ; 63(24): 6757-6776, 2023.
Article in English | MEDLINE | ID: mdl-35196934

ABSTRACT

Nanotechnology is a rapidly growing field with profound applications in different domains, particularly in food science and technology. Nanoparticles (NPs) synthesis, an integral part of nanotechnology-based applications, is broadly classified into chemical, physical and biosynthesis methods. Chemically sensitive and energy-intensive procedures employed for NPs synthesis are some of the limits of traditional chemical approaches. Recent research has focused on developing easy, nontoxic, cost-effective, and environment-friendly NPs synthesis during the last decade. Biosynthesis approaches have been developed to achieve this goal as it is a viable alternative to existing chemical techniques for the synthesis of metallic nanomaterials. Fruit peels contain abundant bioactive compounds including phenols, flavonoids, tannins, triterpenoids, steroids, glycosides, carotenoids, anthocyanins, ellagitannins, vitamin C, and essential oils with substantial health benefits, anti-bacterial and antioxidant properties, generally discarded as byproduct or waste by the fruit processing industry. NPs synthesized using bioactive compounds from fruit peel has futuristic applications for an unrealized market potential for nutraceutical and pharmaceutical delivery. Numerous studies have been conducted for the biosynthesis of metallic NPs such as silver (AgNPs), gold (AuNPs), zinc oxide, iron, copper, palladium and titanium using fruit peel extract, and their synthesis mechanism have been reported in the present review. Additionally, NPs synthesis methods and applications of fruit peel NPs have been discussed.


Subject(s)
Metal Nanoparticles , Metal Nanoparticles/chemistry , Anti-Bacterial Agents , Fruit/chemistry , Gold/analysis , Gold/chemistry , Anthocyanins/analysis , Plant Extracts/chemistry
6.
Crit Rev Food Sci Nutr ; : 1-24, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36260084

ABSTRACT

Refractance window (RW) dryer has an immense advantage in terms of final product quality (textural and color attributes, nutrient retention), energy consumption, and drying time over other conventional dryers. RW is a thin film drying system and a technologically evolving drying process. RW drying is an energy-efficient (re-circulation of water) short drying process as the drying of food materials occurs due to a combined mode of heat transfer conduction, radiation, and convection (hot air circulates over film). The high-quality dried product is obtained because the product temperature remains below 80 °C. RW dryer application is not only limited to drying food products, but it can also be further used for improving the gelling and emulsion properties, formation of leather and edible film, and can be used for handling high protein products, drying leafy vegetables or marine foods as this process does not change any functional properties. Due to these advantages over other drying techniques, RW drying has gained academic and industrial interest in recent years. The industrial application of this technology at large scale is becoming difficult due because of large surface area requirement for mass production. Researchers are trying to scale-up by combing this technology with others technology (Infrared, ultrasound, solar energy, and osmotic dehydration). RW dryer is now extending from the food sector to other sectors like pharmaceutical, cosmetic, pigment, edible film formation, and encapsulation. Majority of the reviews on RW drying focuses on the product quality aspects. This review paper aims to comprehend the RW drying system more mechanistically to understand better the principles, diffusion models explaining the transfer processes, and emerging novel hybrid drying approaches.

7.
Crit Rev Food Sci Nutr ; : 1-26, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36190514

ABSTRACT

Dynamic high pressure treatment (DHPT) either by high pressure homogenization or microfluidisation, is an emerging concept used in the food industry for new products development through macromolecules modifications in addition to simple mixing and emulsification action. Mechanistic understanding of droplets breakup during high pressure homogenization is used to understand how these compact and high molecular weight-sized globular plant proteins are affected during DHPTs. Plant protein needs to be functionalized for advanced use in food formulation. DHPTs brought changes in plant proteins' secondary, tertiary, and quaternary structures through alterations in intermolecular and intramolecular interactions, sulfhydryl groups, and disulfide bonds. These structural changes in plant proteins affected their functional and physicochemical properties like solubility, oil and water holding capacity, gelation, emulsification, foaming, and rheological properties. These remarkable changes made utilization of this concept in novel food system applications like in plant-based dairy analogues. Overall, this review provides a comprehensive and critical understanding of DHPTs on their mechanistic and transport approaches for droplet breakup, structural and functional modification of plant macromolecules. This article also explores the potential of DHPT for formulating plant-based dairy analogues to meet healthy and sustainable food consumption needs. HIGHLIGHTSIt critically reviews high pressure homogenization (HPH) and microfluidisation (DHPM).It explores the mechanistic and transport phenomena approaches of HPH and DHPMHPH and DHPM can induce conformational and structural changes in plant proteins.Improvement in the functional properties of HPH and DHPM treated plant proteins.HPH and DHPM are potentially applicable for plant based dairy alternatives food system.

8.
Crit Rev Food Sci Nutr ; 62(30): 8288-8306, 2022.
Article in English | MEDLINE | ID: mdl-34039180

ABSTRACT

Electrospraying (ESPR) is a cost effective, flexible, and facile method that has been used in the pharmaceutical industry, and thanks to its wide variety of uses such as bioactive compound encapsulation, micronization, and food product coating, which have received a great attention in the food market. It uses a jet of polymer solution for processing food and food-derived products. Droplet size can be extremely small up to nanometers and can be regulated by altering applied voltage and flow rate. Compared to conventional techniques, it is simple, cost effective, uses less solvent and products are obtained in one step with a very high encapsulation efficiency (EE). Encapsulation provided using it protects bioactives from moisture, thermal, oxidative, and mechanical stresses, and thus provides them a good storage stability which will help in increasing the application of these ingredients in food formulation. This technique has an enormous potential for increasing the shelf life of fruit and vegetables through coating and improvement of eating quality. This study is aimed at overviewing the operating principles of ESPR, working parameters, applications, and advantages in the food sector. The article also covers new ESPR techniques like supercritical assisted ESPR and ESPR assisted by pressurized gas (EAPG) which have high yield as compared to conventional ESPR. This article is enriched with good information for research and development in ESPR techniques for development of novel foods.


Subject(s)
Food Handling , Polymers , Fruit
9.
Food Res Int ; 133: 109157, 2020 07.
Article in English | MEDLINE | ID: mdl-32466909

ABSTRACT

Fish, a highly nutritious, containing a good amount of protein and fatty acids, has TMA and TVB-N present as major factors responsible for quality deterioration during storage and maintaining of fish freshness. Freshness is one of the most important parameters in the fish market. There are many methods of estimating fish freshness, out of which some are very costly while others are not user-friendly. However, with more technological innovations, there have been efforts to make a more reliable method of calculating and analyzing freshness. Parameters chosen for assessing the freshness are sensory, physical, chemical and microbiological including the recent trends such as SDS-PAGE, fast protein liquid chromatography, hyper Spectral Imaging Technique, etc. focused on reducing time, destruction and labor. Traditional and recent methods of evaluation of freshness along with their comparison based on several parameters are needed to link them and making it convenient for upcoming researchers to have a detailed study for having a universal indicator for assessing the freshness of fish. Information in the present article has all the methods of assessing the fish freshness been discussed in detail. There has also been focus on bringing the readers knowledge about the comprehensive information related to recent developments. The recommended limit for different indicators signifies the time period for which the particular fish can be stored and it depends upon several factors like species, surrounding environment and enzymatic and non-enzymatic actions. Based on these demands, this paper is uniquely worked upon to review the different literature which brought all the discussions from the past including the recent innovations in assessing the freshness of different fishes with the help of various indicators as well as a complete study of spoilage and toxicity mechanism leading to deterioration in quality, making it easy for the reader and researchers to have quick glance over the trends and innovations.


Subject(s)
Fishes , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...