Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Water Res ; 259: 121876, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38852391

ABSTRACT

This study investigated the coexistence and contamination of manganese (Mn(II)) and arsenite (As(III)) in groundwater and examined their oxidation behavior under different equilibrating parameters, including varying pH, bicarbonate (HCO3-) concentrations, and sodium hypochlorite (NaClO) oxidant concentrations. Results showed that if the molar ratio of NaClO: As(III) was >1, the oxidation of As(III) could be achieved within a minute with an extremely high oxidation rate of 99.7 %. In the binary system, the removal of As(III) prevailed over Mn(II). The As(III) oxidation efficiency increased from 59.8 ± 0.6 % to 70.8 ± 1.9 % when pH rose from 5.7 to 8.0. The oxidation reaction between As(III) and NaClO releases H+ ions, decreasing the pH from 6.77 to 6.19 and reducing the removal efficiency of Mn(II). The presence of HCO3- reduced the oxidation rate of Mn(II) from 63.2 % to 13.9 % within four hours. Instead, the final oxidation rate of Mn(II) increased from 68.1 % to 87.7 %. This increase can be attributed to HCO3- ions competing with the free Mn(II) for the adsorption sites on the sediments, inhibiting the formation of H+. Moreover, kinetic studies revealed that the oxidation reaction between Mn(II) and NaClO followed first-order kinetics based on their R2 values. The significant factors affecting the Mn(II) oxidation efficiency were the initial concentration of NaClO and pH. Applying an artificial neural network (ANN) model for data analysis proved to be an effective tool for predicting Mn(II) oxidation rates under different experimental conditions. The actual Mn(II) oxidation data and the predicted values obtained from the ANN model showed significant consistency. The training and validation data sets yielded R2 values of 0.995 and 0.992, respectively. Moreover, the ANN model highlights the importance of pH and NaClO concentrations in influencing the oxidation rate of Mn(II).

2.
Environ Sci Pollut Res Int ; 30(16): 48157-48167, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36750517

ABSTRACT

Ex situ mineralization of CO2 is a promising technology that employs Ca- and Mg-rich industrial wastes but it simultaneously produces end products. Although Mg is a major mineralization source, it can adversely impact carbonate precipitation and crystal stability during co-precipitation in combination with Ca2+. In this study, the effects of Mg2+ ions on the mineralization process and its products were investigated using precipitates formed at different aqueous concentrations of Mg2+. The final phases of the precipitates were quantitatively evaluated at the end of each process. The alterations undergone by the calcite crystals, which constituted the dominant carbonate phase in each experiment, were analyzed using a sophisticated crystallographic approach. Aragonite was detected at high Mg2+ concentrations (Mg2+/Ca2+ ratio of 2.00), although brucite was the sole phase of the Mg crystal. The increase in Mg2+ ion concentration induced the formation of an amorphous solid. The results revealed that a drastic transformation of the calcite lattice occurred when the ratio of Mg2+/Ca2+ exceeded 1.00, agreeing with the shifts observed in the calcite structure upon comparing the precipitates formed at the Mg2+/Ca2+ ratios of 1.00 and 2.00, wherein microstrain and crystallite sizes changed from 0.040 and 55.33 nm to 0.1533 and 12.35 nm, respectively. At a Mg2+/Ca2+ ratio of 2.00, 6.51% of the Ca2+ ions in the calcite structure were substituted by Mg2+, increasing the surface energy of the crystal and the solubility of the carbonate. Therefore, Mg2+ is a potential hindrance that can impede the precipitation of carbonates and increase instability at certain concentrations.


Subject(s)
Carbon , Magnesium , Magnesium/chemistry , Calcium Carbonate/chemistry , Carbonates , Water/chemistry
3.
Environ Res ; 214(Pt 1): 113830, 2022 11.
Article in English | MEDLINE | ID: mdl-35820655

ABSTRACT

Soil contaminated with diesel fuel is a hazard to the environment and people; therefore, it needs to be remediated. Soil washing enhanced with Tween 80 (TW80), non-toxic and non-ionic surfactant, can effectively remove diesel from contaminated soils. In this study, the effects of 0.01%, 0.1%, 0.5%, 1%, and 1.5% (v/v) [TW80] concentrations; 0%, 5%, and 15% (w/w) bentonite; and variation in pH on washing efficiency were examined in a batch test. The prepared samples were physiochemically characterized on the basis of particle size, zeta potential, cation exchange capacity (CEC), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis. When the bentonite content in soil was 5% or 15%, 1.5% [TW80] solution exhibited the highest washing efficiency. The diesel removal efficiencies in soil with 0% bentonite were slightly higher than those in soils with 5% and 15% bentonite because of the increase in adsorption sites by bentonite; consequently, diesel could not be easily washed out. The extracted n-alkanes showed that the percentage of carbon number 20 was higher than that of the other even-numbered carbons in the retained washed samples analyzed by gas chromatography-mass spectrometry (GC-MS). In all the washing tests, the diesel removal efficiencies in soil with 15% bentonite and 0.1% [TW80] were lower than those in soil with 15% bentonite and water because of adsorption. The bentonite samples washed with TW80 have different morphologies, with a voluminous structure composed of the fusion of all layered structures, as supported by SEM results. Changes in the diesel content and residual TW80 content in the soil before and after washing were shown by the carbon content in the EDS results. The mechanism of the washing effect was investigated by CEC and zeta potential measurements. This study may aid in selecting appropriate conditions for improving washing efficiencies in future field applications.


Subject(s)
Polysorbates , Soil Pollutants , Bentonite , Carbon , Humans , Hydrogen-Ion Concentration , Soil , Surface-Active Agents
4.
Environ Pollut ; 278: 116841, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33735792

ABSTRACT

Here, we aimed to synthesize UiO-66 architected fumaric acid mediated lanthanum (La-fum), zirconium (Zr-fum), and cerium (Ce-fum) metal-organic frameworks (MOFs) for co-immobilizations of both arsenate and fluoride from both single and binary systems. The crystalline behavior of Zr-fum MOF was the lowest compared to the other two forms, due to the fact that it required a modulator support as the nucleus growth nature of zirconium moiety is different. The Langmuir maximum adsorption densities of arsenate (fluoride) were 2.689 (4.240), 1.666 (2.255), and 2.174 (4.155) mmol/g for La-fum, Zr-fum, and Ce-fum, respectively and these adsorption densities were found to have record-high values compared with the existing materials in the literature. The arsenate and fluoride adsorption on the MOF materials were confirmed by XPS, PXRD and FTIR studies. The arsenate adsorption mechanism on La-fum and Ce-fum through monodentate complexation confirmed using the distinguished K-edge shell distance in EXAFS studies. The arsenate and fluoride-sorbed materials were recycled using 0.01 M HNO3 and were further utilized for six consecutive cycles for both arsenate and fluoride adsorption indicated the feasibility of the materials. This kind of facile and easy solvothermal synthesized MOFs could pave a way towards the removal of toxins in a practical wastewater as these have superior adsorption properties, stability and reusability.


Subject(s)
Arsenates , Metal-Organic Frameworks , Adsorption , Fluorides , Wastewater
5.
Chemosphere ; 262: 127596, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32791364

ABSTRACT

Herein, we have designed and synthesized a metal-organic framework (MOF)-like lanthanum-methanoate (LaMe) nanocomplex for the remediation of arsenate (AsO43-) from aqueous environment, in which AsO43- replaces the formic acid from LaMe through ligand exchange, partially disintegrates the crystal lattice, and is re-precipitated as LaAsO4. Consequently, the sucrose-derived biomass carbon (SBC) was utilized as supporting material to develop nanohybrid of LaMe@SBC to inhibit the solubility of lanthanum from LaMe, and enhance the adsorption ability towards AsO43- from water. The maximum adsorption densities of AsO43- on SBC and LaMe were (0.059 and 0.793) mmol/g, respectively. On the other hand, the synergistically re-constructed LaMe@SBC nanohybrid possesses AsO43- adsorption density of 0.918 mmol/g at 25 °C. The studies, including contact time, solution pH, competitive anions, and initial AsO43- concentration, were optimized for maximum AsO43- removal. The adsorption density of the LaMe@SBC for AsO43- removal was pH-dependent, and possesses the maximum adsorption density at pH (4.0 and 5.0); moreover, the removal process was highly selective in the presence of common co-existing anions, except PO43- ion. The adsorption isotherm and kinetics of the LaMe@SBC nanohybrid closely fitted the Langmuir isotherm and pseudo-second-order kinetic models, respectively. The surface interactions among the LaMe@SBC nanohybrid and AsO43- were revealed through FTIR and PXRD analyses. The adsorption of AsO43- on the LaMe@SBC nanohybrid was primarily a chemisorption, namely ligand exchange and electrostatic interactions. The results reported in this research work highlight the feasibility of the LaMe@SBC nanohybrid as a real adsorbent for the removal of AsO43- from aqueous environment.


Subject(s)
Arsenates/chemistry , Lanthanum/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Arsenates/analysis , Biomass , Carbon , Hydrogen-Ion Concentration , Kinetics , Sucrose , Water/chemistry , Water Pollutants, Chemical/analysis
6.
Chemosphere ; 254: 126769, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32361537

ABSTRACT

A series of alginate-derived porous graphitic carbon (PGC) wrapped iron-based organic frameworks (Fe-MIL-88B) composites were synthesized and checked their ability for the removal of arsenite (As(III)) and arsenate (As(V)) from water. Various amounts of PGC (5, 10, 20, and 50 wt/wt %) were utilized as a wrapping material for the development of composites with Fe-MIL-88B@PGCx% and optimized for As(III)/As(V) adsorption. The chemical functionalities, structure, morphology, porous properties and bonding nature of the adsorbents were analyzed using FTIR, PXRD, SEM, BET, and XPS, respectively. Fe-MIL-88B@PGC20% composite was explored to have maximum removal efficiency and fastest adsorption kinetics for As(III)/As(V), of all Fe-MIL-88B@PGCx% composites and pristine Fe-MIL-88B studied here. The developed adsorbents are highly pH dependent and selective in common co-existing anions except for F-, PO43- and humic acid. The Langmuir isotherm studies of As(III) and As(V) adsorption suggest maximum adsorption capacities of 1.6853 and 2.2636 mmol/g, at pH of 3.0 and 9.2, respectively. The XPS analysis of As(III)-sorbed Fe-MIL-88B@PGC20% composite reveals that a portion of As(III) has been oxidized into As(V) during the adsorption process. The continuous flow-bed column study indicates that bed volumes of 249.6 and 452.8 mL of As(III) and As(V) contaminated water was treated, respectively, also reduced the concentration of As(III)/As(V) to less than WHO standards (<10 µg/L).


Subject(s)
Arsenic/chemistry , Metal-Organic Frameworks/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Arsenites , Biopolymers , Carbon , Graphite , Iron/chemistry , Kinetics , Oxidation-Reduction , Porosity , Water Purification
7.
Int J Biol Macromol ; 112: 294-305, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29366887

ABSTRACT

Herein, synthesized and compared the three different kinds of hybrid bio-polymeric composites viz., lanthanum embedded chitosan/gelatin (La@CS-GEL), zirconium embedded chitosan/gelatin (Zr@CS-GEL) and cerium embedded chitosan/gelatin (Ce@CS-GEL) in terms of their oil uptake efficiency. The adsorption efficiency was studied under various optimized parameters like contact time, pH, dose, initial oil concentration and temperature. The oil adsorption capacity was found to be 91, 82 and 45% for La@CS-GEL, Zr@CS-GEL and Ce@CS-GEL composites respectively. The metals were used as a bridging material to connect both CS and GEL using the hydrophilic groups to enhance the oil recovery by hydrophobic interaction. Also, the introduction of metal ions on the surface of biopolymers would modify the oil/water properties which in turn, decrease the interfacial tension between oil and water phases. The mechanism of oil uptake was explained using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), energy dispersive X-ray (EDAX) and heat of combustion. The experimental data confirmed Langmuir isotherm as the best fit for oil adsorption process. Thermodynamic parameters such as standard free energy (ΔG°), standard enthalpy (ΔH°) and standard entropy (ΔS°) indicated that the oil adsorption was spontaneous and endothermic. The oil adsorption mechanism was established based on isotherm and thermodynamic models.


Subject(s)
Adsorption , Biopolymers/chemistry , Oils/isolation & purification , Petroleum Pollution/prevention & control , Chitosan/chemistry , Humans , Ions/chemistry , Lanthanum/chemistry , Oils/toxicity , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Thermogravimetry , X-Ray Diffraction , Zirconium/chemistry
8.
Int J Biol Macromol ; 91: 1002-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27259649

ABSTRACT

The aim of this work is to gain a better understanding of the formation of lanthanum complex onto iminodiacetic acid and chitosan (CS@La-IDAMP) composite for effective removal of fluoride from aqueous solution using a tea-bag model for the first time. The surface textural and chemical properties of the synthesized composites were characterized by FTIR, SEM with EDAX and mapping images. The experimental data revealed that the fluoride adsorption was rapid, maximum fluoride removal could be removed within 12min contact time at neutral pH in room temperature under batch equilibrium model. The equilibrium data for adsorption of fluoride on the synthesized blends were well represented by the Freundlich isotherm, giving a maximum adsorption capacity of 17.50mg/g. The adsorption kinetic models were also examined and it was found that all the sorption processes were better described by the pseudo-second-order model. This results suggested that the efficiency of the fluoride removal process was mainly controlled by electrostatic attraction and ion-exchange mechanism. Furthermore, the CS@La-IDAMP material was tested for the regeneration ability with the suitable regenerant to make this process as cost-effective. Finally, it can be concluded that the composite material is the potential adsorbent for the treatment of fluoride from water.


Subject(s)
Chitosan/chemistry , Fluorides/isolation & purification , Lanthanum/chemistry , Models, Theoretical , Resins, Synthetic/chemistry , Water/chemistry , Adsorption , Hydrogen-Ion Concentration , Imino Acids/chemistry , Kinetics , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Time Factors
9.
Int J Biol Macromol ; 78: 280-6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25863157

ABSTRACT

The present study reports a novel approach for the preparation of polyamidoamine grafted chitosan beads (PAAGCB) via Michael addition followed by protonation of PAAGCB to get protonated PAAGCB (H(+)-PAAGCB). Various metal ions viz., Al(3+), Ce(3+), La(3+) and Zr(4+) have been loaded onto the PAAGCB in order to get respective Al-PAAGCB, Ce-PAAGCB, La-PAAGCB and Zr-PAAGCB. All these sorbents were used to remove the fluoride ions from aqueous solution. Ethylenediamine is used for amination purpose of chitosan beads through Michael addition. The results showed that Zr-PAAGCB was more selective with the maximum defluoridation capacity of 17.47 mg/g than the other metal ion loaded chitosan beads. The sorbents were characterized using FTIR, XRD, SEM and EDAX. The fluoride sorption was reasonably explained using Freundlich and Langmuir isotherm models. The mechanism concerned in the adsorption of fluoride ions is by physisorption on heterogeneous materials according to the results obtained by fitting the data to various isotherm models. Temperature study carried out at 303, 313 and 323K revealed that the adsorption process was spontaneous and endothermic in nature. The applicability of the sorbents studied has been tested with field sample collected from fluoride endemic area.


Subject(s)
Chitosan/chemistry , Dendrimers/chemistry , Fluorides/chemistry , Microspheres , Water , Adsorption , Hydrogen-Ion Concentration , Ions , Spectrum Analysis/methods , Thermodynamics
10.
Carbohydr Polym ; 120: 60-8, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25662688

ABSTRACT

The present investigation explains the fluoride removal from aqueous solution using alginate-zirconium complex prepared with respective dicarboxylic acids like oxalic acid (Ox), malonic acid (MA) and succinic acid (SA) as a medium. The complexes viz., alginate-oxalic acid-zirconium (Alg-Ox-Zr), alginate-malonic acid-zirconium (Alg-MA-Zr) and alginate-succinic acid-zirconium (Alg-SA-Zr) were synthesized and studied for fluoride removal. The synthesized complexes were characterized by FTIR, XRD, SEM with EDAX and mapping images. The effects of various operating parameters were optimized. The result showed that the maximum removal of fluoride 9653mgF(-)/kg was achieved by Alg-Ox-Zr complex at acidic pH in an ambient atmospheric condition. Equilibrium data of Alg-Ox-Zr complex was fitted well with Freundlich isotherm. The calculated values of thermodynamic parameters indicated that the fluoride adsorption is spontaneous and endothermic in nature. The mechanism of fluoride removal behind Alg-Ox-Zr complex has been proposed in detail. The suitability of the Alg-Ox-Zr complex has been tested with the field sample collected in a nearby fluoride endemic area.


Subject(s)
Alginates/chemistry , Biopolymers/chemistry , Fluorides/isolation & purification , Water/chemistry , Zirconium/chemistry , Dicarboxylic Acids/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration
11.
Int J Biol Macromol ; 70: 621-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25036602

ABSTRACT

In this paper, a new kind of approach undertakes for the synthesis of novel chitosan (CS) blended with ethylenediamine (ED) functionalized synthetic polymers viz., acrylonitrile/divinylbenzene/vinylbenzyl chloride (CS@AN/DVB/VBC-ED) and styrene/divinylbenzene/vinylbenzyl chloride (CS@ST/DVB/VBC-ED) for defluoridation of water. Under batch mode, various influencing parameters like shaking time, pH, competitor ions and temperature were optimized. The fluoride removal was reasonably explained using Freundlich, Langmuir and D-R isotherms. The thermodynamic parameters viz., ΔG°, ΔH° and ΔS° indicates the nature of the fluoride sorption with the sorbents. The FT-IR, XRD and SEM with EDAX analysis were used to study the fluoride adsorption of CS@AN/DVB/VBC-ED and CS@ST/DVB/VBC-ED blends. The thermal stability of both the sorbents was tested using TGA/DSC analysis. Studies were also conducted to test the potential application of the prepared polymeric blends for fluoride removal from field water collected from the nearby fluoride endemic area.


Subject(s)
Chitosan/chemistry , Ethylenediamines/chemistry , Fluorides/adverse effects , Polymers/chemistry , Adsorption , Calorimetry, Differential Scanning , Drinking Water/chemistry , Drinking Water/standards , Fluorides/chemistry , Hydrogen-Ion Concentration , Ions/chemistry , Polymers/chemical synthesis , Spectroscopy, Fourier Transform Infrared , Thermodynamics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...