Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 58(100): 13947-13950, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36448595

ABSTRACT

The cross-reactivity to many analytes is one major limitation of most synthetic receptors (SRs) known so far. Herein, we show that through time-resolved competitive binding assays, even unselectively binding SRs can be utilized for analyte distinction and quantification. Furthermore, our methodology has also been applied to analyte mixtures and can be used in a microplate format.


Subject(s)
Receptors, Artificial , Virtues , Binding, Competitive , Biological Assay
2.
Chem Sci ; 12(27): 9420-9431, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34349916

ABSTRACT

Fluorescence-detected circular dichroism (FDCD) spectroscopy is applied for the first time to supramolecular host-guest and host-protein systems and compared to the more known electronic circular dichroism (ECD). We find that FDCD can be an excellent choice for common supramolecular applications, e.g. for the detection and chirality sensing of chiral organic analytes, as well as for reaction monitoring. Our comprehensive investigations demonstrate that FDCD can be conducted in favorable circumstances at much lower concentrations than ECD measurements, even in chromophoric and auto-emissive biofluids such as blood serum, overcoming the sensitivity limitation of absorbance-based chiroptical spectroscopy. Besides, the combined use of FDCD and ECD can provide additional valuable information about the system, e.g. the chemical identity of an analyte or hidden aggregation phenomena. We believe that simultaneous FDCD- and ECD-based chiroptical characterization of emissive supramolecular systems will be of general benefit for characterizing fluorescent, chiral supramolecular systems due to the higher information content obtained by their combined use.

3.
Chem Commun (Camb) ; 56(82): 12327-12330, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32945328

ABSTRACT

Both thermodynamic and kinetic insights are needed for a proper analysis of association and dissociation processes of host-guest interactions. However, kinetic descriptions of supramolecular systems are scarce in the literature because suitable experimental protocols are lacking. We introduce here three time-resolved methods that allow for convenient determination of kinetic rate constants of spectroscopically silent or even insoluble guests with the macrocyclic cucurbit[n]uril family and human serum albumin (HSA) protein as representative hosts.


Subject(s)
Bridged-Ring Compounds/chemistry , Serum Albumin/chemistry , Bridged-Ring Compounds/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Kinetics , Serum Albumin/metabolism , Thermodynamics
4.
Chem Commun (Camb) ; 56(34): 4652-4655, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32253396

ABSTRACT

Achiral chromophoric hosts, i.e. acyclic cucurbit[n]urils and molecular tweezers, were found to respond with characteristic Circular Dichroism (CD) spectra to the presence of micromolar concentrations of chiral hydrocarbons, terpenes, steroids, amino acids and their derivates, and drugs in water. In favourable cases, this allows for analyte identification or for reaction monitoring.


Subject(s)
Bridged-Ring Compounds/chemistry , Imidazoles/chemistry , Amino Acids/chemistry , Circular Dichroism , Peptides/chemistry , Pharmaceutical Preparations/chemistry , Steroids/chemistry , Terpenes/chemistry
5.
Chemistry ; 26(33): 7433-7441, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-31943402

ABSTRACT

The release of two organic guests from cucurbit[7]uril (CB7) was selectively monitored by the stopped-flow method in aqueous solutions of inorganic salts to reveal the mechanistic picture in detail. Two contrasting mechanisms were identified: The symmetric dicationic 2,7-dimethyldiazapyrenium shows a cation-independent complex dissociation mechanism coupled to deceleration of the ingression in the presence of alkali and alkaline earth cations (Mn+ ) due to competitive formation of CB7-Mn+ complexes. A much richer, unprecedented kinetic behaviour was observed for the ingression and egression of the monocationic and non-symmetric berberine (B+ ). The formation of ternary complex B+ -CB7-Mn+ was unambiguously revealed. A difference of more than two orders of magnitude was found in the equilibrium constants of Mn+ binding to B+ -CB7 inclusion complex. Large cations, such as K+ and Ba2+ , also promoted B+ expulsion from the ternary complex in a bimolecular process. This study reveals a previously hidden mechanistic picture and motivates systematic kinetic investigations of other host-guest systems.

6.
Chem Sci ; 11(41): 11142-11153, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-34094355

ABSTRACT

Non-covalent chemosensing ensembles of cucurbit[n]urils (CBn) have been widely used in proof-of-concept sensing applications, but they are prone to disintegrate in saline media, e.g. biological fluids. We show here that covalent cucurbit[7]uril-indicator dye conjugates are buffer- (10× PBS buffer) and saline-stable (up to 1.4 M NaCl) and allow for selective sensing of Parkinson's drug amantadine in human urine and saliva, where the analogous non-covalent CB7⊃dye complex is dysfunctional. The in-depth analysis of the covalent host-dye conjugates in the gas-phase, and deionized versus saline aqueous media revealed interesting structural, thermodynamic and kinetic effects that are of general interest for the design of CBn-based supramolecular chemosensors and systems. This work also introduces a novel high-affinity indicator dye for CB7 through which fundamental limitations of indicator displacement assays (IDA) were exposed, namely an impractical slow equilibration time. Unlike non-covalent CBn⊃dye reporter pairs, the conjugate chemosensors can also operate through a SN2-type guest-dye exchange mechanism, which shortens assay times and opens new avenues for tailoring analyte-selectivity.

SELECTION OF CITATIONS
SEARCH DETAIL