Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(21): 7982-7991, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817587

ABSTRACT

Understanding the structure and recognition of highly conserved regulatory segments of the integrated viral DNA genome that forms unique topologies can greatly aid in devising novel therapeutic strategies to counter chronic infections. In this study, we configured a probe system using highly environment-sensitive nucleoside analogs, 5-fluoro-2'-deoxyuridine (FdU) and 5-fluorobenzofuran-2'-deoxyuridine (FBFdU), to investigate the structural polymorphism of HIV-1 long terminal repeat (LTR) G-quadruplexes (GQs) by fluorescence and 19F NMR. FdU and FBFdU, serving as hairpin and GQ sensors, produced distinct spectral signatures for different GQ topologies adopted by LTR G-rich oligonucleotides. Importantly, systematic 19F NMR analysis in Xenopus laevis oocytes gave unprecedented information on the structure adopted by the LTR G-rich region in the cellular environment. The results indicate that it forms a unique GQ-hairpin hybrid architecture, a potent hotspot for selective targeting. Furthermore, structural models generated using MD simulations provided insights on how the probe system senses different GQs. Using the responsiveness of the probes and Taq DNA polymerase stop assay, we monitored GQ- and hairpin-specific ligand interactions and their synergistic inhibitory effect on the replication process. Our findings suggest that targeting GQ and hairpin motifs simultaneously using bimodal ligands could be a new strategy to selectively block the viral replication.

2.
J Org Chem ; 89(11): 7680-7691, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38739842

ABSTRACT

Safrole is a natural product present in many plants and plant products, including spices and essential oils. During cellular metabolism, it converts to a highly reactive trans-isosafrole (SF) intermediate that reacts with genomic DNA and forms N2-SF-dG and N6-SF-dA DNA adducts, which are detected in the oral tissue of cancer patients with betel quid chewing history. To study the SF-induced carcinogenesis and to probe the role of low fidelity translesion synthesis (TLS) polymerases in bypassing SF adducts, herein, we report the synthesis of N2-SF-dG modified DNAs using phosphoramidite chemistry. The N2-SF-dG modification in the duplex DNA does not affect the thermal stability and retains the B-form of helical conformation, indicating that this adduct may escape the radar of common DNA repair mechanisms. Primer extension studies showed that the N2-SF-dG adduct is bypassed by human TLS polymerases hpolκ and hpolη, which perform error-free replication across this adduct. Furthermore, molecular modeling and dynamics studies revealed that the adduct reorients to pair with the incoming nucleotide, thus allowing the effective bypass. Overall, the results indicate that hpolκ and hpolη do not distinguish the N2-SF-dG adduct, suggesting that they may not be involved in the safrole-induced carcinogenicity.


Subject(s)
DNA Adducts , DNA-Directed DNA Polymerase , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/chemistry , Humans , DNA Adducts/chemistry , DNA Adducts/metabolism , DNA Adducts/chemical synthesis , Safrole/chemistry , Safrole/analogs & derivatives , DNA/chemistry , DNA/metabolism , Molecular Structure
3.
Biochemistry ; 62(16): 2391-2406, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37486230

ABSTRACT

The secondary metabolites of polypropanoids, methyleugenol (MEG), and estragole (EG), found in many herbs and spices, are commonly used as food flavoring agents and as ingredients in cosmetics. MEG and EG have been reported to cause hepatocarcinogenicity in rodents, human livers, and lung cells. The formation of N2-dG and N6-dA DNA adducts is primarily attributed to the carcinogenicity of these compounds. Therefore, these compounds have been classified as "possible human carcinogens" by the International Agency for Research on Cancer and "reasonably anticipated to be a human carcinogen" by the National Toxicology Program. Herein, we report the synthesis of the N2-MEG-dG and N2-EG-dG modified oligonucleotides to study the mutagenicity of these DNA adducts. Our studies show that N2-MEG-dG and N2-EG-dG could be bypassed by human translesion synthesis (TLS) polymerases hpolκ and hpolη in an error-free manner. The steady-state kinetics of dCTP incorporation by hpolκ across N2-MEG-dG and N2-EG-dG adducts show that the catalytic efficiencies (kcat/Km) were ∼2.5- and ∼4.4-fold higher, respectively, compared to the unmodified dG template. A full-length primer extension assay demonstrates that hpolκ exhibits better catalytic efficiency than hpolη. Molecular modeling and dynamics studies capturing pre-insertion, insertion, and post-insertion steps reveal the structural features associated with the efficient bypass of the N2-MEG-dG adduct by hpolκ and indicate the reorientation of the adduct in the active site allowing the successful insertion of the incoming nucleotide. Together, these results suggest that though hpolκ and hpolη perform error-free TLS across MEG and EG during DNA replication, the observed carcinogenicity of these adducts could be attributed to the involvement of other low fidelity polymerases.


Subject(s)
DNA Adducts , DNA-Directed DNA Polymerase , Humans , DNA-Directed DNA Polymerase/metabolism , DNA Replication
4.
J Mol Biol ; 435(17): 168188, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37380013

ABSTRACT

Viruses are believed to be the obligate intracellular parasites that only carry genes essential for infecting and hijacking the host cell machinery. However, a recently discovered group of viruses belonging to the phylum nucleocytovirocota, also known as the nucleo-cytoplasmic large DNA viruses (NCLDVs), possess a number of genes that code for proteins predicted to be involved in metabolism, and DNA replication, and repair. In the present study, first, using proteomics of viral particles, we show that several proteins required for the completion of the DNA base excision repair (BER) pathway are packaged within the virions of Mimivirus as well as related viruses while they are absent from the virions of Marseillevirus and Kurlavirus that are NCLDVs with smaller genomes. We have thoroughly characterized three putative base excision repair enzymes from Mimivirus, a prototype NCLDV and successfully reconstituted the BER pathway using the purified recombinant proteins. The mimiviral uracil-DNA glycosylase (mvUDG) excises uracil from both ssDNA and dsDNA, a novel finding contrary to earlier studies. The putative AP-endonuclease (mvAPE) specifically cleaves at the abasic site created by the glycosylase while also exhibiting the 3'-5' exonuclease activity. The Mimivirus polymerase X protein (mvPolX) can bind to gapped DNA substrates and perform single nucleotide gap-filling followed by downstream strand displacement. Furthermore, we show that when reconstituted in vitro, mvUDG, mvAPE, and mvPolX function cohesively to repair a uracil-containing DNA predominantly by long patch BER and together, may participate in the BER pathway during the early phase of Mimivirus life-cycle.


Subject(s)
DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase , Mimiviridae , DNA , DNA Replication , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Uracil/metabolism , Mimiviridae/genetics
5.
Chem Sci ; 14(21): 5627-5637, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37265741

ABSTRACT

Paucity of efficient probes and small molecule ligands that can distinguish different G-quadruplex (GQ) topologies poses challenges not only in understanding their basic structure but also in targeting an individual GQ form from others. Alternatively, G-rich sequences that harbour unique chimeric structural motifs (e.g., GQ-duplex or GQ-hairpin junctions) are perceived as new therapeutic hotspots. In this context, the epidermal growth factor receptor (EGFR) gene, implicated in many cancers, contains a 30 nucleotide G-rich segment in the promoter region, which adopts in vitro two unique architectures each composed of a GQ topology (parallel and hybrid-type) juxtaposed with a hairpin domain. Here, we report the use of a novel dual-app probe, C5-trifluoromethyl benzofuran-modified 2'-deoxyuridine (TFBF-dU), in the systematic analysis of EGFR GQs and their interaction with small molecules by fluorescence and 19F NMR techniques. Notably, distinct fluorescence and 19F NMR signals exhibited by the probe enabled the quantification of the relative population of random, parallel and hybrid-type GQ structures under different conditions, which could not be obtained by conventional CD and 1H NMR techniques. Using the fluorescence component, we quantified ligand binding properties of GQs, whereas the 19F label enabled the assessment of ligand-induced changes in GQ dynamics. Studies also revealed that mutations in the hairpin domain affected GQ formation and stability, which was further functionally verified in polymerase stop assay. We anticipate that these findings and useful properties of the nucleoside probe could be utilized in designing and evaluating binders that jointly target both GQ and hairpin domains for enhanced selectivity and druggability.

6.
J Biol Chem ; 299(5): 104700, 2023 05.
Article in English | MEDLINE | ID: mdl-37059184

ABSTRACT

Ribonucleoproteins (RNPs) comprise one or more RNA and protein molecules that interact to form a stable complex, which commonly involves conformational changes in the more flexible RNA components. Here, we propose that Cas12a RNP assembly with its cognate CRISPR RNA (crRNA) guide instead proceeds primarily through Cas12a conformational changes during binding to more stable, prefolded crRNA 5' pseudoknot handles. Phylogenetic reconstructions and sequence and structure alignments revealed that the Cas12a proteins are divergent in sequence and structure while the crRNA 5' repeat region, which folds into a pseudoknot and anchors binding to Cas12a, is highly conserved. Molecular dynamics simulations of three Cas12a proteins and their cognate guides revealed substantial flexibility for unbound apo-Cas12a. In contrast, crRNA 5' pseudoknots were predicted to be stable and independently folded. Limited trypsin hydrolysis, differential scanning fluorimetry, thermal denaturation, and CD analyses supported conformational changes of Cas12a during RNP assembly and an independently folded crRNA 5' pseudoknot. This RNP assembly mechanism may be rationalized by evolutionary pressure to conserve CRISPR loci repeat sequence, and therefore guide RNA structure, to maintain function across all phases of the CRISPR defense mechanism.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , RNA , Ribonucleoproteins , Gene Editing , Phylogeny , Ribonucleoproteins/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , Protein Folding
7.
Biochemistry ; 61(22): 2546-2559, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36314731

ABSTRACT

Preferential stabilization of G-quadruplex (G4) structures using small-molecule ligands has emerged as an effective approach to develop anticancer drugs. Herein, we report the synthesis of three indole-fused quindoline derivatives with varying lengths of side chains (InqEt1, InqEt2, and InqPr2) as selective ligands for promoter G4 structures. The ligands stabilize the parallel topology of c-MYC and c-KIT1 promoter G4 DNAs over telomeric and duplex DNAs, as evident from the circular dichroism melting and polymerase stop-assay experiments. The lead ligand, InqPr2, downregulates the gene expression of c-MYC and c-KIT in HeLa and HepG2 cells, respectively, leading to apoptotic cell death. Molecular modeling and dynamics studies support the 2:1 binding stoichiometry revealed from the Job plot analysis and show the ligand's structural features that enable the preferential binding to the parallel G4 structures over other topologies. Our studies show that indole-fused quindoline derivatives can be harnessed as new molecular scaffolds for selective targeting of parallel G4 topologies.


Subject(s)
G-Quadruplexes , Quinolines , Ligands , Indoles/chemistry
8.
Biochemistry ; 61(11): 1064-1076, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35584037

ABSTRACT

G-Quadruplex (G4) structures play a pivotal role in diverse biological functions, including essential processes, such as telomere maintenance and gene regulation. G4 structures formed in functional regions of genomes are actively pursued toward therapeutics and are targeted by small-molecule ligands that alter their structure and/or stability. Herein, we report the synthesis of bisindolylmaleimide-based (BIM) ligands, which preferentially stabilize parallel G4 structures of c-MYC and c-KIT oncogenes over the telomeric h-RAS1 G4 and duplex DNAs. The preferential stabilization of parallel G4s with BIM ligands is further validated by the DNA polymerase stop assay, where stop products were only observed for templates containing the c-MYC G4 sequence. Nuclear magnetic resonance (NMR) titration studies indicate that the lead ligand BIM-Pr1 forms a 2:1 complex with c-MYC G4 DNA with a KD of 38 ± 5 µM. The BIM ligand stacks at the 5' and 3' quartets, with molecular modeling and dynamics studies supporting the proposed binding mode. The ligand is cytotoxic to HeLa cells and downregulates c-MYC gene expression. Collectively, the results present bisindolylmaleimide scaffolds as novel and powerful G4 targeting agents.


Subject(s)
G-Quadruplexes , DNA/chemistry , DNA/genetics , Gene Expression , HeLa Cells , Humans , Indoles , Ligands , Maleimides , Telomere
9.
Phys Chem Chem Phys ; 24(10): 6238-6255, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35229834

ABSTRACT

G-Quadruplexes (G4s) are four-stranded motifs formed by G-rich nucleic acid sequences. These structures harbor significant biological importance as they are involved in telomere maintenance, transcription, and translation. Owing to their dynamic and polymorphic nature, G4 structures relevant for therapeutic applications need to be stabilized by small-molecule ligands. Some of these ligands turn on fluorescence upon binding to G4 structures, which provides a powerful detection platform for G4 structures. Herein, we report the synthesis of fluorescent ligands based on the indolyl-quinolinium moiety to specifically stabilize G4 structures and sense DNA. CD titration and melting experiments have shown that the lead ligand induces the formation of parallel G4 with preferential stabilization of the c-MYC and c-KIT1 promoter G4s over the telomeric, h-RAS1 G4, and duplex DNA. Fluorimetric titration data revealed fluorescence enhancement when these ligands interact with G4 DNA structures. The fluorescence lifetime experiment of the ligand with different DNAs revealed three excited state lifetimes (ns), which indicates more than one binding site. MD studies showed that the ligand exhibits 3 : 1 stoichiometry of binding with c-MYC G4 DNA and revealed the unique structural features, which impart selectivity toward parallel topology. The ligand was found to have low cytotoxicity and exhibited preferential staining of DNA over RNA. Collectively, the results presented here offer avenues to harness indolyl-quinolinium scaffolds for sensing and selective stabilization of G4 structures.


Subject(s)
G-Quadruplexes , DNA/chemistry , Fluorescence , Ligands , Telomere/metabolism
10.
J Org Chem ; 87(5): 2367-2379, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35133166

ABSTRACT

Herein we describe results on the pairing properties of synthetic DNA and RNA oligonucleotides that contain nucleotide analogues with a 7-membered sugar ring (oxepane nucleotides). Specifically, we describe the stereoselective synthesis of a set of three oxepane thymine nucleosides (OxT), their conversion to phosphoramidite derivatives, and their use in solid-phase synthesis to yield chimeric OxT-DNA and OxT-RNA strands. The different regioisomeric OxT phosphoramidites allowed for positional variations of the phosphate bridge and assessment of duplex stability when the oxepane nucleotides were incorporated in dsDNA, dsRNA, and DNA-RNA hybrids. Little to no destabilization was observed when two of the three regioisomeric OxT units were incorporated in the DNA strand of DNA-RNA hybrids, a remarkable result considering the dramatically different structure of oxepanes in comparison to 2'-deoxynucleosides. Extensive molecular modeling and dynamics studies further revealed the various structural features responsible for the tolerance of both OxT modifications in DNA-RNA duplexes, such as base-base stacking and sugar-phosphate H-bond interactions. These studies suggest that oxepane nucleotide analogues may find applications in synthetic biology, where synthetic oligonucleotides can be used to create new tools for biotechnology and medicine.


Subject(s)
Nucleosides , RNA , Carbohydrates , DNA/chemistry , Nucleic Acid Conformation , Nucleosides/chemistry , Oligonucleotides/chemistry , Phosphates , RNA/chemistry , Sugars
11.
Nucleic Acids Res ; 48(9): 4643-4657, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32282904

ABSTRACT

We report on the synthesis of siRNAs containing both 2'-5'- and 3'-5'-internucleotide linkages and their effects on siRNA structure, function, and interaction with RNAi proteins. Screening of these siRNAs against their corresponding mRNA targets showed that 2'-5' linkages were well tolerated in the sense strand, but only at a few positions in the antisense strand. Extensive modification of the antisense strand minimally affected 5'-phosphorylation of the siRNA by kinases, however, it negatively affected siRNA loading into human AGO2. Modelling and molecular dynamics simulations were fully consistent with these findings. Furthermore, our studies indicated that the presence of a single 5'p-rN1-(2'-5')-N2 unit in the antisense strand does not alter the 'clover leaf' bend and sugar puckers that are critical for anchoring the 5'-phosphate to Ago 2 MID domain. Importantly, 2'-5'-linkages had the added benefit of abrogating immune-stimulatory activity of siRNAs. Together, these results demonstrate that 2'-5'/3'-5'-modified siRNAs, when properly designed, can offer an efficient new class of siRNAs with diminished immune-stimulatory responses.


Subject(s)
RNA Interference , RNA, Small Interfering/chemistry , Argonaute Proteins/metabolism , Carbohydrate Conformation , HeLa Cells , Humans , Luciferases, Firefly/genetics , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA, Small Interfering/chemical synthesis , RNA, Small Interfering/immunology , Tumor Suppressor Protein p53/genetics
12.
Curr Protoc Nucleic Acid Chem ; 78(1): e93, 2019 09.
Article in English | MEDLINE | ID: mdl-31529784

ABSTRACT

The N2 -position of 2'-deoxyguanosine (N2 -position in dG) is well known for forming carcinogenic minor groove DNA adducts, which originate from environmental pollutants, chemicals, and tobacco smoke. The N2 -dG DNA adducts have strong implications on biological processes such as DNA replication and repair and may, therefore, result in genomic instability by generating mutations or even cell death. It is crucial to know the role of DNA polymerases when they encounter the N2 -dG damaged site in DNA. To get detailed insights on the in vitro DNA damage tolerance or bypass mechanism, there is a need to synthetically access N2 -dG damaged DNAs. This article describes a detailed protocol of the synthesis of N2 -aryl-dG modified nucleotides using the Buchwald-Hartwig reaction as a main step and incorporation of the modified nucleotides into DNA. In Basic Protocol 1, we focused on the synthesis of five different N2 -dG modified phosphoramidites with varying bulkiness (benzyl to pyrenyl). Basic Protocol 2 describes the details of synthesizing N2 -dG modified oligonucleotides employing the standard solid phase synthesis protocol. This strategy provides robust synthetic access to various modifications at the N2 -position of dG; the modified dGs serve as good substrates to study translesion synthesis and repair pathways. Overall data presented in this article are based on earlier published reports. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Deoxyguanosine/chemistry , Oligonucleotides/chemical synthesis , Organophosphorus Compounds/chemical synthesis , DNA Damage , Genomic Instability , Oligonucleotides/chemistry , Organophosphorus Compounds/chemistry
13.
ACS Chem Biol ; 14(10): 2102-2114, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31532996

ABSTRACT

G-Quadruplexes (G4s) are four-stranded nucleic acid structures whose underlying G-rich sequences are present across the chromosome and transcriptome. These highly structured elements are known to regulate many key biological functions such as replication, transcription, translation, and genomic stability, thereby providing an additional layer of gene regulation. G4s are structurally dynamic and diverse, and they can fold into numerous topologies. They are potential targets for small molecules, which can modulate their functions. To this end, myriad classes of small molecules have been developed and studied for their ability to bind and stabilize these unique structures. Though many of them can selectively target G4s over duplex DNA, only a few of them can distinguish one G4 topology from others. Design and development of G4-specific ligands are challenging owing to the subtle structural variations among G4 structures. However, screening assays and computational methods have identified a few classes of ligands that preferentially or specifically target the G4 topology of interest over others. This review focuses on the small molecules and fluorescent probes that specifically target human promoter G4s associated with oncogenes. Targeting promoter G4s could circumvent the issues such as undruggability and development of drug resistance associated with the protein targets. The ligands discussed here highlight that development of G4-specific ligands is an achievable goal in spite of the limited structural data available. The future goal is to pursue the development of G4-specific ligands endowed with drug-like properties for G4-based therapeutics and diagnostics.


Subject(s)
DNA/metabolism , Fluorescent Dyes/metabolism , G-Quadruplexes , DNA/genetics , Humans , Ligands , Oncogenes , Promoter Regions, Genetic
14.
Chembiochem ; 20(23): 2955-2960, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31206965

ABSTRACT

RNA G-quadruplex (G4)-forming motifs present at the 5'-UTR of the protein phosphatase (PP2Ac) gene are the regulatory targets of the fragile X mental retardation protein (FMRP), which is weakly expressed in Fragile X patients. Herein, we report that the existence of such G4-forming sequence represses the translation of the PP2Acα gene. This study opens therapeutic avenues to design small molecule ligands that mimic the function of the FMRP.


Subject(s)
G-Quadruplexes , Gene Expression Regulation , Nucleotide Motifs , Protein Phosphatase 2/genetics , RNA, Messenger/genetics , HeLa Cells , Humans , Protein Biosynthesis
15.
Nucleic Acids Res ; 47(13): 6932-6945, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31001622

ABSTRACT

Acanthamoeba polyphaga mimivirus is an amoeba-infecting giant virus with over 1000 genes including several involved in DNA replication and repair. Here, we report the biochemical characterization of gene product 577 (gp577), a hypothetical protein (product of L537 gene) encoded by mimivirus. Sequence analysis and phylogeny suggested gp577 to be a primase-polymerase (PrimPol)-the first PrimPol to be identified in a nucleocytoplasmic large DNA virus (NCLDV). Recombinant gp577 protein purified as a homodimer and exhibited de novo RNA as well as DNA synthesis on circular and linear single-stranded DNA templates. Further, gp577 extends a DNA/RNA primer annealed to a DNA or RNA template using deoxyribonucleoties (dNTPs) or ribonucleotides (NTPs) demonstrating its DNA/RNA polymerase and reverse transcriptase activity. We also show that gp577 possesses terminal transferase activity and is capable of extending ssDNA and dsDNA with NTPs and dNTPs. Mutation of the conserved primase motif residues of gp577 resulted in the loss of primase, polymerase, reverse transcriptase and terminal transferase activities. Additionally, we show that gp577 possesses translesion synthesis (TLS) activity. Mimiviral gp577 represents the first protein from an NCLDV endowed with primase, polymerase, reverse transcriptase, terminal transferase and TLS activities.


Subject(s)
DNA Nucleotidylexotransferase/metabolism , DNA Primase/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed RNA Polymerases/metabolism , Mimiviridae/enzymology , RNA-Directed DNA Polymerase/metabolism , Amino Acid Motifs , Amino Acid Sequence , Conserved Sequence , DNA Nucleotidylexotransferase/chemistry , DNA Nucleotidylexotransferase/genetics , DNA Nucleotidylexotransferase/isolation & purification , DNA Primase/chemistry , DNA Primase/genetics , DNA Primase/isolation & purification , DNA Primers , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/isolation & purification , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/isolation & purification , Dimerization , Mimiviridae/genetics , RNA , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/isolation & purification , Sequence Alignment , Sequence Homology, Amino Acid
16.
J Org Chem ; 84(4): 1734-1747, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30628447

ABSTRACT

We report the synthesis of N2-aryl (benzyl, naphthyl, anthracenyl, and pyrenyl)-deoxyguanosine (dG) modified phosphoramidite building blocks and the corresponding damaged DNAs. Primer extension studies using E. coli Pol IV, a translesion polymerase, demonstrate that translesion synthesis (TLS) across these N2-dG adducts is error free. However, the efficiency of TLS activity decreases with increase in the steric bulkiness of the adducts. Molecular dynamics simulations of damaged DNA-Pol IV complexes reveal the van der Waals interactions between key amino acid residues (Phe13, Ile31, Gly32, Gly33, Ser42, Pro73, Gly74, Phe76, and Tyr79) of the enzyme and adduct that help to accommodate the bulky damages in a hydrophobic pocket to facilitate TLS. Overall, the results presented here provide insights into the TLS across N2-aryl-dG damaged DNAs by Pol IV.


Subject(s)
DNA Polymerase beta/metabolism , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/chemical synthesis , Escherichia coli/enzymology , DNA Damage , DNA Polymerase beta/chemistry , DNA Replication , Deoxyguanosine/chemistry , Escherichia coli/chemistry
17.
J Photochem Photobiol B ; 190: 128-136, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30529810

ABSTRACT

Guanine (G) quadruplexes (G4) are nucleic acid secondary structures formed by G-rich sequences, commonly found in human telomeric and oncogene-promoter regions, have emerged as targets for regulation of multiple biological processes. Considering their importance, targeting the G-quadruplex structure with small molecular binders is extremely pertinent. In this work, red emitting water soluble fluorophores bearing push-pull substituents were synthesized and examined for their interaction with human telomeric G4 and duplex (ds) -DNAs. The presence of a strong electron donating (dimethylamino) and electron withdrawing (cationic pyridinium) groups linked through a conjugated double bond helps in water solubility and enabling the emission in the near IR region (>700-nm). Binding of this cationic dye to the G4-DNA yields multiple-fold emission enhancement (~70 fold with G4-DNA vs. ~7 fold with ds-DNA) along with hypsochromic wavelength shifts (35 nm with G4-DNA and 8 nm with ds-DNA). The remarkable emission changes, ~2-4 fold enhanced binding efficiency noted with the antiparallel conformation of G4-DNA indicates preferential selectivity over ds-DNA. The molecular docking and dynamics studies of the ligands with duplex and G4-DNA were performed, and they provide insights into the mode of binding of these dyes with G4-DNA and supplement the experimental observations.


Subject(s)
G-Quadruplexes , Molecular Probes/chemistry , Binding Sites , DNA/chemistry , Fluorescent Dyes , Humans , Infrared Rays , Ligands , Molecular Docking Simulation , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL