Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398555

ABSTRACT

This research is an exploratory study on the sesquiterpenes and flavonoid present in the leaves of Artemisia tridentata subsp. tridentata. The leaf foliage was extracted with 100% chloroform. Thin-layer chromatography (TLC) analysis of the crude extract showed four bands. Each band was purified by column chromatography followed by recrystallization. Three sesquiterpene lactones (SLs) were isolated-leucodin, matricarin and desacetylmatricarin. Of these, desacetylmatricarin was the major component. In addition, a highly bio-active flavonoid, quercetagetin 3,6,4'-trimethyl ether (QTE), was also isolated. This is the first report on the isolation of this component from the leaves of Artemisia tridentata subsp. tridentata. All the components were identified and isolated by TLC, high-performance liquid chromatography (HPLC) and mass spectrometry (MS) techniques. Likewise, the structure and stereochemistry of the purified components were characterized by extensive spectroscopic analysis, including 1D and 2D nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) studies. The antioxidant activities of crude extract were analyzed, and their radical-scavenging ability was determined by Ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The crude extract showed antioxidant activity of 18.99 ± 0.51 and 11.59 ± 0.38 µmol TEg-1 FW for FRAP and DPPH assay, respectively, whereas the activities of matricarin, leucodin, desacetylmatricarin and QTE were 13.22, 13.03, 14.90 and 15.02 µmol TEg-1 FW, respectively, for the FRAP assay. The antitumor properties were probed by submitting the four isolated compounds to the National Cancer Institute (NCI) for NCI-60 cancer cell line screening. Overall, the results of the one-dose assay for each SL were unremarkable. However, the flavonoid's one-dose mean graph demonstrated significant growth inhibition and lethality, which prompted an evaluation of this compound against the 60-cell panel at a five-dose assay. Tests from two separate dates indicate a lethality of approximately 75% and 98% at the log-4 concentration when tested against the melanoma cancer line SK-Mel 5. This warrants further testing and derivatization of the bioactive components from sagebrush as a potential source for anticancer properties.


Subject(s)
Artemisia , Sesquiterpenes , Antioxidants/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Sesquiterpenes/pharmacology , Sesquiterpenes/analysis , Lactones/pharmacology , Lactones/analysis , Phytochemicals/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry
2.
Chemosphere ; 338: 139469, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37442380

ABSTRACT

The presence of toxic cadmium ions in the wastewater resulted from industrial sector forms the critical issue for public health and ecosystem. This study determines the ability of four vertical subsurface flow constructed wetlands units in the treatment of simulated wastewater laden with cadmium ions. This was achieved through using sewage sludge byproduct as alternative for the traditional sand to be substrate for aforementioned units in order to satisfy the sustainable concepts; however, Canna indica and Typha domingensis can apply to enhance the cadmium removal. The performance of constructed wetlands has been evaluated through monitoring of the pH, dissolved oxygen (DO), temperature, and concentrations of cadmium (Cd) in the effluents for retention time (0.5-120 h) and metal concentration (5-40 mg/L). The results demonstrated that the Cd removal percentage was exceeded 82% beyond 5 days and for concentration of 5 mg/L; however, this percentage was decreased with smaller retention time and higher metal concentration. The Grau second-order kinetic model accurately simulated the measurements of effluent Cd concentrations as a function of retention times. The FT-IR analysis indicated the existence of certain functional groups capable of enhancing the Cd removal. The treated wastewater's pH, DO, temperature, total dissolved solids (TDS), and electrical conductivity (EC) all meet the requirements for irrigation water.


Subject(s)
Typhaceae , Zingiberales , Wastewater , Waste Disposal, Fluid/methods , Cadmium/analysis , Wetlands , Ecosystem , Spectroscopy, Fourier Transform Infrared , Sewage , Oxygen/analysis , Nitrogen/analysis
3.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884789

ABSTRACT

Despite the identification of Aß plaques and NFTs as biomarkers for Alzheimer's disease (AD) pathology, therapeutic interventions remain elusive, with neither an absolute prophylactic nor a curative medication available to impede the progression of AD presently available. Current approaches focus on symptomatic treatments to maintain AD patients' mental stability and behavioral symptoms by decreasing neuronal degeneration; however, the complexity of AD pathology requires a wide range of therapeutic approaches for both preventive and curative treatments. In this regard, this review summarizes the role of receptors as a potential target for treating AD and focuses on the path of major receptors which are responsible for AD progression. This review gives an overall idea centering on major receptors, their agonist and antagonist and future prospects of viral mimicry in AD pathology. This article aims to provide researchers and developers a comprehensive idea about the different receptors involved in AD pathogenesis that may lead to finding a new therapeutic strategy to treat AD.


Subject(s)
Alzheimer Disease/therapy , GABA Antagonists/pharmacology , Plaque, Amyloid/pathology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, Nicotinic/biosynthesis , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Humans , Neurofibrillary Tangles/pathology , gamma-Aminobutyric Acid/metabolism
4.
Molecules ; 26(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34834086

ABSTRACT

Diverse medicinal plants such as those from the genus Artemisia have been employed globally for centuries by individuals belonging to different cultures. Universally, Artemisia species have been used to remedy various maladies that range from simple fevers to malaria. A survey conducted by the World Health Organization (WHO) demonstrated that 80% of the global population is highly reliant on herbal medicine for their primary healthcare. WHO recommends artemisinin-based combination therapies (ACT) for the treatment of global diseases such as malaria. Artemisinin is a bioactive compound derived from Artemisia annua leaves. It is a sesquiterpene endoperoxide with potent antimalarial properties. This review strives to instill natural products to chemists and others in diverse fields with a heterogeneous set of knowledge compiled from multifaceted researchers and organizations in literature. In particular, the various Artemisia species and effective extraction, isolation, and characterization methodologies are discussed in detail. An in-depth investigation into the literature reveals that divergent species of Artemisia exhibit a vast array of biological activities such as antimalarial, antitumor, and anti-inflammatory activities. There is substantial potential for bioactive compounds from Artemisia to provide significant relief from differing human ailments, but more meticulous research in this field is needed.


Subject(s)
Artemisia annua/chemistry , Artemisinins , Malaria/drug therapy , Phytochemicals , Plants, Medicinal/chemistry , Artemisinins/chemistry , Artemisinins/isolation & purification , Artemisinins/therapeutic use , Humans , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/therapeutic use
5.
Chemistry ; 25(46): 10886-10894, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31215087

ABSTRACT

A support-free heterogeneous Pd3 Co nanostructured composite (NC), synthesized through a hydrothermal route, acted as an effective catalytic system in multivariate Heck-, Sonogashira-, and Suzuki-type coupling reactions of iodonium ylides. The XPS analysis of the bimetallic Pd3 Co NCs confirmed the elemental composition as 75 % palladium and 25 % cobalt. Furthermore, high-resolution (HR) TEM analysis confirmed the spherical morphology of the Pd3 Co bimetallic nanoparticles. The average diameter of the NCs is 14.8 nm. The coupling reaction proceeded through the generation of α-iodoenones with simultaneous migration of the phenyl group, thereby giving a scaffold with higher atom economy. The heterogeneous Pd3 Co NCs were recycled and reused without any significant change in catalytic ability for up to five reaction cycles. The high concentration of Pd and association of cobalt into the lattice of palladium appears to enhance its catalytic ability for the diverse coupling reactions in comparison with its monometallic counterparts as well as with bimetallic NCs with a comparatively lesser amount of Pd.

SELECTION OF CITATIONS
SEARCH DETAIL