Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Cancer J ; 13(1): 77, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173322

ABSTRACT

Next-Generation Sequencing is needed for the accurate genetic risk stratification of acute myeloid leukemia according to European LeukemiaNet (ELN) guidelines. We validated and compared the 2022 ELN risk classification in a real-life cohort of 546 intensively and 379 non-intensively treated patients. Among fit patients, those aged ≥65 years old showed worse OS than younger regardless risk classification. Compared with the 2017 classification, 14.5% of fit patients changed the risk with the 2022 classification, increasing the high-risk group from 44.3% to 51.8%. 3.7% and 0.9% FLT3-ITD mutated patients were removed from the favorable and adverse 2017 categories respectively to 2022 intermediate risk group. We suggest that midostaurin therapy could be a predictor for 3 years OS (85.2% with vs. 54.8% without midostaurin, P = 0.04). Forty-seven (8.6%) patients from the 2017 intermediate group were assigned to the 2022 adverse-risk group as they harbored myelodysplasia (MDS)-related mutations. Patients with one MDS-related mutation did not reach median OS, while patients with ≥2 mutations had 13.6 months median OS (P = 0.002). Patients with TP53 ± complex karyotype or inv(3) had a dismal prognosis (7.1 months median OS). We validate the prognostic utility of the 2022 ELN classification in a real-life setting providing supportive evidences to improve risk stratification guidelines.


Subject(s)
Leukemia, Myeloid, Acute , Nucleophosmin , Humans , Aged , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Prognosis , Risk Factors , Mutation
2.
Cancers (Basel) ; 15(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36900222

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease classified into three risk categories (favorable, intermediate and adverse) with significant differences in outcomes. Definitions of risk categories evolve overtime, incorporating advances in molecular knowledge of AML. In this study, we analyzed the impacts of evolving risk classifications in 130 consecutive AML patients in a single-center real-life experience. Complete cytogenetic and molecular data were collected using conventional qPCR and targeted Next Generation Sequencing (NGS). Five-year OS probabilities were consistent among all classification models (roughly 50-72%, 26-32% and 16-20% for favorable, intermediate and adverse risk groups, respectively). In the same way, the medians of survival months and prediction power were similar in all models. In each update, around 20% of patients were re-classified. The adverse category consistently increased over time (31% in MRC, 34% in ELN2010, 50% in ELN2017), reaching up to 56% in the recent ELN2022. Noteworthily, in multivariate models, only age and the presence of TP53 mutations remained statistically significant. With updates in risk-classification models, the percentage of patients assigned to the adverse group is increasing, and so will the indications for allogeneic stem cell transplantation.

3.
Expert Rev Hematol ; 16(4): 277-287, 2023 04.
Article in English | MEDLINE | ID: mdl-36951195

ABSTRACT

INTRODUCTION: Acute myeloid leukemia (AML) is a heterogeneous disease currently including 12 entities defined by genetic findings with remarkable differences in prognosis and targeted therapies availability. Therefore, identification of genetic abnormalities by efficient techniques has become a necessary tool in routine clinical practice for AML patients. AREAS COVERED: In the present review, we will focus on our current knowledge of relevant prognosis gene mutations in AML, as recently updated by European Leukemia Net Leukemia risk classification. EXPERT OPINION: About 25% of newly diagnosed younger AML patients will be promptly classified as favorable prognosis by demonstrating the presence of NPM1 mutations or CBF rearrangements by qRTPCR, allowing for implementing molecular measurable residual disease-guided chemotherapy-based protocols. In fit AML patients, rapid detection of FLT3ITD is mandatory to associate midostaurin or quizartinib to treatment and assignment to intermediate prognosis. Conventional cytogenetics and FISH still have a role for detection adverse prognosis karyotypes and KMT2A, MECOM, or NUP98 gene rearrangements. Further genetic characterization is performed with NGS panels including favorable prognosis gene CEBPA bZIP and adverse prognosis genes, such as TP53 and myelodysplasia associated genes.


Subject(s)
Leukemia, Myeloid, Acute , Nucleophosmin , Humans , Prognosis , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Antineoplastic Combined Chemotherapy Protocols , fms-Like Tyrosine Kinase 3/genetics
4.
Cancers (Basel) ; 15(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36672386

ABSTRACT

Next-Generation Sequencing (NGS) implementation to perform accurate diagnosis in acute myeloid leukemia (AML) represents a major challenge for molecular laboratories in terms of specialization, standardization, costs and logistical support. In this context, the PETHEMA cooperative group has established the first nationwide diagnostic network of seven reference laboratories to provide standardized NGS studies for AML patients. Cross-validation (CV) rounds are regularly performed to ensure the quality of NGS studies and to keep updated clinically relevant genes recommended for NGS study. The molecular characterization of 2856 samples (1631 derived from the NGS-AML project; NCT03311815) with standardized NGS of consensus genes (ABL1, ASXL1, BRAF, CALR, CBL, CEBPA, CSF3R, DNMT3A, ETV6, EZH2, FLT3, GATA2, HRAS, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1 and WT1) showed 97% of patients having at least one mutation. The mutational profile was highly variable according to moment of disease, age and sex, and several co-occurring and exclusion relations were detected. Molecular testing based on NGS allowed accurate diagnosis and reliable prognosis stratification of 954 AML patients according to new genomic classification proposed by Tazi et al. Novel molecular subgroups, such as mutated WT1 and mutations in at least two myelodysplasia-related genes, have been associated with an adverse prognosis in our cohort. In this way, the PETHEMA cooperative group efficiently provides an extensive molecular characterization for AML diagnosis and risk stratification, ensuring technical quality and equity in access to NGS studies.

5.
BMC Med ; 20(1): 379, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36224590

ABSTRACT

This study evaluated the persistence of IgM, IgA, and IgG to SARS-CoV-2 spike and nucleocapsid antigens up to 616 days since the onset of symptoms in a longitudinal cohort of 247 primary health care workers from Barcelona, Spain, followed up since the start of the pandemic. The study also assesses factors affecting antibody levels, including comorbidities and the responses to variants of concern as well as the frequency of reinfections. Despite a gradual and significant decline in antibody levels with time, seropositivity to five SARS-CoV-2 antigens combined was always higher than 90% over the whole study period. In a subset of 23 participants who had not yet been vaccinated by November 2021, seropositivity remained at 95.65% (47.83% IgM, 95.65% IgA, 95.65% IgG). IgG seropositivity against Alpha and Delta predominant variants was comparable to that against the Wuhan variant, while it was lower for Gamma and Beta (minority) variants and for IgA and IgM. Antibody levels at the time point closest to infection were associated with age, smoking, obesity, hospitalization, fever, anosmia/hypogeusia, chest pain, and hypertension in multivariable regression models. Up to 1 year later, just before the massive roll out of vaccination, antibody levels were associated with age, occupation, hospitalization, duration of symptoms, anosmia/hypogeusia, fever, and headache. In addition, tachycardia and cutaneous symptoms associated with slower antibody decay, and oxygen supply with faster antibody decay. Eight reinfections (3.23%) were detected in low responders, which is consistent with a sustained protective role for anti-spike naturally acquired antibodies. Stable persistence of IgG and IgA responses and cross-recognition of the predominant variants circulating in the 2020-2021 period indicate long-lasting and largely variant-transcending humoral immunity in the initial 20.5 months of the pandemic, in the absence of vaccination.


Subject(s)
Ageusia , COVID-19 , Anosmia , Antibodies, Viral , COVID-19/epidemiology , Humans , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Oxygen , Reinfection , SARS-CoV-2
6.
Immunology ; 167(4): 528-543, 2022 12.
Article in English | MEDLINE | ID: mdl-36065677

ABSTRACT

We evaluated the kinetics of antibody responses to Two years into the COVID-19 pandemic and 1 year after the start of vaccination rollout, the world faced a peak of cases associated with the highly contagious Omicron variant of concern (VoC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) and nucleocapsid (N) antigens over five cross-sectional visits (January-November 2021), and the determinants of pre-booster immunoglobulin levels, in a prospective cohort of vaccinated primary health care workers in Catalonia, Spain. Antibodies against S antigens after a full primary vaccination course, mostly with BNT162b2, decreased steadily over time and were higher in pre-exposed (n = 247) than naïve (n = 200) individuals, but seropositivity was maintained at 100% (100% IgG, 95.5% IgA, 30.6% IgM) up to 319 days after the first dose. Antibody binding to variants of concern was highly maintained for IgG compared to wild type but significantly reduced for IgA and IgM, particularly for Beta and Gamma. Factors significantly associated with longer-term antibodies included age, sex, occupation, smoking, adverse reaction to vaccination, levels of pre-vaccination SARS-CoV-2 antibodies, interval between disease onset and vaccination, hospitalization, oxygen supply, post COVID and symptomatology. Earlier morning vaccination hours were associated with higher IgG responses in pre-exposed participants. Symptomatic breakthroughs occurred in 9/447 (2.01%) individuals, all among naïve (9/200, 4.5%) and generally boosted antibody responses. Additionally, an increase in IgA and/or IgM seropositivity to variants, and N seroconversion at later time points (6.54%), indicated asymptomatic breakthrough infections, even among pre-exposed. Seropositivity remained highly stable over almost a year after vaccination. However, gradually waning of anti-S IgGs that correlate with neutralizing activity, coupled to evidence of an increase in breakthrough infections during the Delta and Omicron predominance, provides a rationale for booster immunization.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Longitudinal Studies , Cross-Sectional Studies , BNT162 Vaccine , Pandemics , Prospective Studies , Vaccination , Antibodies, Viral , Primary Health Care , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Antibodies, Neutralizing
7.
Viruses ; 14(9)2022 09 14.
Article in English | MEDLINE | ID: mdl-36146844

ABSTRACT

SARS-CoV-2 infection has become a global health problem specially exacerbated with the continuous appearance of new variants. Healthcare workers (HCW) have been one of the most affected sectors. Children have also been affected, and although infection generally presents as a mild disease, some have developed the Pediatric Inflammatory Multisystem Syndrome Temporally Associated with SARS-CoV-2 (PIMS-TS). We recruited 190 adults (HCW and cohabitants, April to June 2020) and 57 children (April 2020 to September 2021), of whom 12 developed PIMS-TS, in a hospital-based study in Spain. Using an in-house Luminex assay previously validated, antibody levels were measured against different spike and nucleocapsid SARS-CoV-2 proteins, including the receptor-binding domain (RBD) of the Alpha, Beta, Gamma, and Delta variants of concern (VoC). Seropositivity rates obtained from children and adults, respectively, were: 49.1% and 11% for IgG, 45.6% and 5.8% for IgA, and 35.1% and 7.3% for IgM. Higher antibody levels were detected in children who developed PIMS-TS compared to those who did not. Using the COVID-19 IgM/IgA ELISA (Vircell, S.L.) kit, widely implemented in Spanish hospitals, a high number of false positives and lower seroprevalences compared with the Luminex estimates were found, indicating a significantly lower specificity and sensitivity. Comparison of antibody levels against RBD-Wuhan versus RBD-VoCs indicated that the strongest positive correlations for all three isotypes were with RBD-Alpha, while the lowest correlations were with RBD-Delta for IgG, RBD-Gamma for IgM, and RBD-Beta for IgA. This study highlights the differences in antibody levels between groups with different demographic and clinical characteristics, as well as reporting the IgG, IgM, and IgA response to RBD VoC circulating at the study period.


Subject(s)
COVID-19 , Coronavirus Infections , Pneumonia, Viral , Adult , Antibodies, Viral , Betacoronavirus , COVID-19/complications , COVID-19/epidemiology , Child , Coronavirus Infections/epidemiology , Health Personnel , Humans , Immunoassay , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus , Systemic Inflammatory Response Syndrome
8.
Vaccines (Basel) ; 8(2)2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32325736

ABSTRACT

Streptococcus suis is a Gram-positive bacterium responsible for major infections in pigs and economic losses in the livestock industry, but also an emerging zoonotic pathogen causing serious diseases in humans. No vaccine is available so far against this microorganism. Conserved surface proteins are among the most promising candidates for new and effective vaccines. Until now, research on this pathogen has focused on swine isolates, but there is a lack of studies to identify and characterize surface proteins from human clinical isolates. In this work, we performed a comparative proteomic analysis of six clinical isolates from human patients, all belonging to the major serotype 2, by "shaving" the live bacterial cells with trypsin, followed by LC-MS/MS analysis. We identified 131 predicted surface proteins and carried out a label-free semi-quantitative analysis of protein abundances within the six strains. Then, we combined our proteomics results with bioinformatic tools to help improving the selection of novel antigens that can enter the pipeline of vaccine candidate testing. Our work is then a complement to the reverse vaccinology concept.

SELECTION OF CITATIONS
SEARCH DETAIL
...