Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Redox Biol ; 72: 103161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677214

ABSTRACT

Ischaemia-reperfusion (IR) injury is the paradoxical consequence of the rapid restoration of blood flow to an ischaemic organ. Although reperfusion is essential for tissue survival in conditions such as myocardial infarction and stroke, the excessive production of mitochondrial reactive oxygen species (ROS) upon reperfusion initiates the oxidative damage that underlies IR injury, by causing cell death and inflammation. This ROS production is caused by an accumulation of the mitochondrial metabolite succinate during ischaemia, followed by its rapid oxidation upon reperfusion by succinate dehydrogenase (SDH), driving superoxide production at complex I by reverse electron transport. Inhibitors of SDH, such as malonate, show therapeutic potential by decreasing succinate oxidation and superoxide production upon reperfusion. To better understand the mechanism of mitochondrial ROS production upon reperfusion and to assess potential therapies, we set up an in vitro model of IR injury. For this, isolated mitochondria were incubated anoxically with succinate to mimic ischaemia and then rapidly reoxygenated to replicate reperfusion, driving a burst of ROS formation. Using this system, we assess the factors that contribute to the magnitude of mitochondrial ROS production in heart, brain, and kidney mitochondria, as well as screening for inhibitors of succinate oxidation with therapeutic potential.


Subject(s)
Mitochondria , Reperfusion Injury , Superoxides , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Animals , Superoxides/metabolism , Mitochondria/metabolism , Succinic Acid/metabolism , Reactive Oxygen Species/metabolism , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/antagonists & inhibitors , Oxidation-Reduction , Malonates/pharmacology , Malonates/metabolism , Male , Rats , Mice
2.
Nat Commun ; 15(1): 2204, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538579

ABSTRACT

The naked mole-rat Heterocephalus glaber is a eusocial mammal exhibiting extreme longevity (37-year lifespan), extraordinary resistance to hypoxia and absence of cardiovascular disease. To identify the mechanisms behind these exceptional traits, metabolomics and RNAseq of cardiac tissue from naked mole-rats was compared to other African mole-rat genera (Cape, Cape dune, Common, Natal, Mahali, Highveld and Damaraland mole-rats) and evolutionarily divergent mammals (Hottentot golden mole and C57/BL6 mouse). We identify metabolic and genetic adaptations unique to naked mole-rats including elevated glycogen, thus enabling glycolytic ATP generation during cardiac ischemia. Elevated normoxic expression of HIF-1α is observed while downstream hypoxia responsive-genes are down-regulated, suggesting adaptation to low oxygen environments. Naked mole-rat hearts show reduced succinate levels during ischemia compared to C57/BL6 mouse and negligible tissue damage following ischemia-reperfusion injury. These evolutionary traits reflect adaptation to a unique hypoxic and eusocial lifestyle that collectively may contribute to their longevity and health span.


Subject(s)
Longevity , Oxygen , Animals , Mice , Longevity/genetics , Hypoxia/genetics , Mole Rats/genetics , Ischemia
3.
Basic Res Cardiol ; 118(1): 34, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37639068

ABSTRACT

In the context of myocardial infarction, the burst of superoxide generated by reverse electron transport (RET) at complex I in mitochondria is a crucial trigger for damage during ischaemia/reperfusion (I/R) injury. Here we outline the necessary conditions for superoxide production by RET at complex I and how it can occur during reperfusion. In addition, we explore various pathways that are implicated in generating the conditions for RET to occur and suggest potential therapeutic strategies to target RET, aiming to achieve cardioprotection.


Subject(s)
Myocardial Infarction , Reperfusion Injury , Humans , Electron Transport , Superoxides , Oxidative Phosphorylation , Mitochondria , Myocardial Infarction/prevention & control
4.
J Exp Biol ; 226(9)2023 05 01.
Article in English | MEDLINE | ID: mdl-37066839

ABSTRACT

Extremely anoxia-tolerant animals, such as freshwater turtles, survive anoxia and reoxygenation without sustaining tissue damage to their hearts. In contrast, for mammals, the ischemia-reperfusion (IR) injury that leads to tissue damage during a heart attack is initiated by a burst of superoxide (O2·-) production from the mitochondrial respiratory chain upon reperfusion of ischemic tissue. Whether turtles avoid oxidative tissue damage because of an absence of mitochondrial superoxide production upon reoxygenation, or because the turtle heart is particularly protected against this damage, is unclear. Here, we investigated whether there was an increase in mitochondrial O2·- production upon the reoxygenation of anoxic red-eared slider turtle hearts in vivo and in vitro. This was done by measuring the production of H2O2, the dismutation product of O2·-, using the mitochondria-targeted mass-spectrometric probe in vivo MitoB, while in parallel assessing changes in the metabolites driving mitochondrial O2·- production, succinate, ATP and ADP levels during anoxia, and H2O2 consumption and production rates of isolated heart mitochondria. We found that there was no excess production of in vivo H2O2 during 1 h of reoxygenation in turtles after 3 h anoxia at room temperature, suggesting that turtle hearts most likely do not suffer oxidative injury after anoxia because their mitochondria produce no excess O2·- upon reoxygenation. Instead, our data support the conclusion that both the low levels of succinate accumulation and the maintenance of ADP levels in the anoxic turtle heart are key factors in preventing the surge of O2·- production upon reoxygenation.


Subject(s)
Turtles , Animals , Reactive Oxygen Species/metabolism , Turtles/metabolism , Superoxides/metabolism , Hydrogen Peroxide/metabolism , Hypoxia/metabolism , Mitochondria, Heart/metabolism , Succinic Acid/metabolism , Succinates/metabolism , Mammals/metabolism
5.
Nature ; 615(7952): 490-498, 2023 03.
Article in English | MEDLINE | ID: mdl-36890227

ABSTRACT

Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-ß production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.


Subject(s)
Fumarate Hydratase , Interferon-beta , Macrophages , Mitochondria , RNA, Mitochondrial , Humans , Argininosuccinate Synthase/metabolism , Argininosuccinic Acid/metabolism , Aspartic Acid/metabolism , Cell Respiration , Cytosol/metabolism , Fumarate Hydratase/antagonists & inhibitors , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Fumarates/metabolism , Interferon-beta/biosynthesis , Interferon-beta/immunology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Lupus Erythematosus, Systemic/enzymology , Macrophages/enzymology , Macrophages/immunology , Macrophages/metabolism , Membrane Potential, Mitochondrial , Metabolomics , Mitochondria/genetics , Mitochondria/metabolism , RNA, Mitochondrial/metabolism
6.
Redox Biol ; 59: 102600, 2023 02.
Article in English | MEDLINE | ID: mdl-36630820

ABSTRACT

Current treatments for acute ischemic stroke aim to reinstate a normal perfusion in the ischemic territory but can also cause significant ischemia-reperfusion (IR) injury. Previous data in experimental models of stroke show that ischemia leads to the accumulation of succinate, and, upon reperfusion, the accumulated succinate is rapidly oxidized by succinate dehydrogenase (SDH) to drive superoxide production at mitochondrial complex I. Despite this process initiating IR injury and causing further tissue damage, the potential of targeting succinate metabolism to minimize IR injury remains unexplored. Using both quantitative and untargeted high-resolution metabolomics, we show a time-dependent accumulation of succinate in both human and mouse brain exposed to ischemia ex vivo. In a mouse model of ischemic stroke/mechanical thrombectomy mass spectrometry imaging (MSI) shows that succinate accumulation is confined to the ischemic region, and that the accumulated succinate is rapidly oxidized upon reperfusion. Targeting succinate oxidation by systemic infusion of the SDH inhibitor malonate upon reperfusion leads to a dose-dependent decrease in acute brain injury. Together these findings support targeting succinate metabolism upon reperfusion to decrease IR injury as a valuable adjunct to mechanical thrombectomy in ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Stroke , Mice , Animals , Humans , Ischemia , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Brain Ischemia/therapy , Brain Ischemia/metabolism , Stroke/etiology , Stroke/therapy , Stroke/metabolism , Succinic Acid/metabolism , Thrombectomy
7.
FEBS Lett ; 597(2): 246-261, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36217875

ABSTRACT

The compartmentation and distribution of metabolites between mitochondria and the rest of the cell is a key parameter of cell signalling and pathology. Here, we have developed a rapid fractionation procedure that enables us to take mouse heart and liver from in vivo and within ~ 30 s stabilise the distribution of metabolites between mitochondria and the cytosol by rapid cooling, homogenisation and dilution. This is followed by centrifugation of mitochondria through an oil layer to separate mitochondrial and cytosolic fractions for subsequent metabolic analysis. Using this procedure revealed the in vivo compartmentation of mitochondrial metabolites and will enable the assessment of the distribution of metabolites between the cytosol and mitochondria during a range of situations in vivo.


Subject(s)
Heart , Mitochondria , Mice , Animals , Cytosol/metabolism , Liver/metabolism , Mitochondria, Liver/metabolism , Mitochondria, Heart/metabolism , Cell Fractionation/methods
9.
Circ Res ; 131(6): 528-541, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35959683

ABSTRACT

BACKGROUND: Inhibiting SDH (succinate dehydrogenase), with the competitive inhibitor malonate, has shown promise in ameliorating ischemia/reperfusion injury. However, key for translation to the clinic is understanding the mechanism of malonate entry into cells to enable inhibition of SDH, its mitochondrial target, as malonate itself poorly permeates cellular membranes. The possibility of malonate selectively entering the at-risk heart tissue on reperfusion, however, remains unexplored. METHODS: C57BL/6J mice, C2C12 and H9c2 myoblasts, and HeLa cells were used to elucidate the mechanism of selective malonate uptake into the ischemic heart upon reperfusion. Cells were treated with malonate while varying pH or together with transport inhibitors. Mouse hearts were either perfused ex vivo (Langendorff) or subjected to in vivo left anterior descending coronary artery ligation as models of ischemia/reperfusion injury. Succinate and malonate levels were assessed by liquid chromatography-tandem mass spectrometry LC-MS/MS, in vivo by mass spectrometry imaging, and infarct size by TTC (2,3,5-triphenyl-2H-tetrazolium chloride) staining. RESULTS: Malonate was robustly protective against cardiac ischemia/reperfusion injury, but only if administered at reperfusion and not when infused before ischemia. The extent of malonate uptake into the heart was proportional to the duration of ischemia. Malonate entry into cardiomyocytes in vivo and in vitro was dramatically increased at the low pH (≈6.5) associated with ischemia. This increased uptake of malonate was blocked by selective inhibition of MCT1 (monocarboxylate transporter 1). Reperfusion of the ischemic heart region with malonate led to selective SDH inhibition in the at-risk region. Acid-formulation greatly enhances the cardioprotective potency of malonate. CONCLUSIONS: Cardioprotection by malonate is dependent on its entry into cardiomyocytes. This is facilitated by the local decrease in pH that occurs during ischemia, leading to its selective uptake upon reperfusion into the at-risk tissue, via MCT1. Thus, malonate's preferential uptake in reperfused tissue means it is an at-risk tissue-selective drug that protects against cardiac ischemia/reperfusion injury.


Subject(s)
Myocardial Reperfusion Injury , Animals , Chromatography, Liquid , HeLa Cells , Humans , Ischemia , Malonates/pharmacology , Malonates/therapeutic use , Mice , Mice, Inbred C57BL , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac , Tandem Mass Spectrometry
10.
Redox Biol ; 55: 102429, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35961099

ABSTRACT

Mitochondria-targeted H2S donors are thought to protect against acute ischemia-reperfusion (IR) injury by releasing H2S that decreases oxidative damage. However, the rate of H2S release by current donors is too slow to be effective upon administration following reperfusion. To overcome this limitation here we develop a mitochondria-targeted agent, MitoPerSulf that very rapidly releases H2S within mitochondria. MitoPerSulf is quickly taken up by mitochondria, where it reacts with endogenous thiols to generate a persulfide intermediate that releases H2S. MitoPerSulf is acutely protective against cardiac IR injury in mice, due to the acute generation of H2S that inhibits respiration at cytochrome c oxidase thereby preventing mitochondrial superoxide production by lowering the membrane potential. Mitochondria-targeted agents that rapidly generate H2S are a new class of therapy for the acute treatment of IR injury.

11.
Cell Chem Biol ; 29(7): 1232-1244.e5, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35868236

ABSTRACT

During metabolism, carboxylic acids are often activated by conjugation to the thiol of coenzyme A (CoA). The resulting acyl-CoAs comprise a group of ∼100 thioester-containing metabolites that could modify protein behavior through non-enzymatic N-acylation of lysine residues. However, the importance of many potential acyl modifications remains unclear because antibody-based methods to detect them are unavailable and the in vivo concentrations of their respective acyl-CoAs are poorly characterized. Here, we develop cysteine-triphenylphosphonium (CysTPP), a mass spectrometry probe that uses "native chemical ligation" to sensitively detect the major acyl-CoAs present in vivo through irreversible modification of its amine via a thioester intermediate. Using CysTPP, we show that longer-chain (C13-C22) acyl-CoAs often constitute ∼60% of the acyl-CoA pool in rat tissues. These hydrophobic longer-chain fatty acyl-CoAs have the potential to non-enzymatically modify protein residues.


Subject(s)
Acyl Coenzyme A , Coenzyme A , Acyl Coenzyme A/metabolism , Acylation , Animals , Coenzyme A/metabolism , Cysteine/metabolism , Mass Spectrometry , Proteins/metabolism , Rats
12.
Science ; 376(6600): eabh2841, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35737799

ABSTRACT

Tumor necrosis factor (TNF) is a critical host resistance factor against tuberculosis. However, excess TNF produces susceptibility by increasing mitochondrial reactive oxygen species (mROS), which initiate a signaling cascade to cause pathogenic necrosis of mycobacterium-infected macrophages. In zebrafish, we identified the mechanism of TNF-induced mROS in tuberculosis. Excess TNF in mycobacterium-infected macrophages elevates mROS production by reverse electron transport (RET) through complex I. TNF-activated cellular glutamine uptake leads to an increased concentration of succinate, a Krebs cycle intermediate. Oxidation of this elevated succinate by complex II drives RET, thereby generating the mROS superoxide at complex I. The complex I inhibitor metformin, a widely used antidiabetic drug, prevents TNF-induced mROS and necrosis of Mycobacterium tuberculosis-infected zebrafish and human macrophages; metformin may therefore be useful in tuberculosis therapy.


Subject(s)
Electron Transport Complex I , Macrophages , Metformin , Mycobacterium tuberculosis , Reactive Oxygen Species , Tuberculosis , Tumor Necrosis Factor-alpha , Animals , Citric Acid Cycle/drug effects , Electron Transport , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/metabolism , Humans , Macrophages/metabolism , Macrophages/microbiology , Macrophages/pathology , Metformin/pharmacology , Mycobacterium tuberculosis/metabolism , Necrosis , Reactive Oxygen Species/metabolism , Succinic Acid/metabolism , Tuberculosis/metabolism , Tuberculosis/microbiology , Tuberculosis/pathology , Tumor Necrosis Factor-alpha/metabolism , Zebrafish
13.
Redox Biol ; 54: 102368, 2022 08.
Article in English | MEDLINE | ID: mdl-35749842

ABSTRACT

Cell models of cardiac ischemia-reperfusion (IR) injury are essential to facilitate understanding, but current monolayer cell models poorly replicate the in vivo IR injury that occurs within a three-dimensional tissue. Here we show that this is for two reasons: the residual oxygen present in many cellular hypoxia models sustains mitochondrial oxidative phosphorylation; and the loss of lactate from cells into the incubation medium during ischemia enables cells to sustain glycolysis. To overcome these limitations, we incubated isolated adult mouse cardiomyocytes anoxically while inhibiting lactate efflux. These interventions recapitulated key markers of in vivo ischemia, notably the accumulation of succinate and the loss of adenine nucleotides. Upon reoxygenation after anoxia the succinate that had accumulated during anoxia was rapidly oxidized in association with extensive mitochondrial superoxide/hydrogen peroxide production and cell injury, mimicking reperfusion injury. This cell model will enable key aspects of cardiac IR injury to be assessed in vitro.


Subject(s)
Myocytes, Cardiac , Reperfusion Injury , Animals , Disease Models, Animal , Energy Metabolism , Hypoxia/metabolism , Ischemia/metabolism , Lactates/metabolism , Mice , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Succinic Acid/metabolism
14.
Cardiovasc Drugs Ther ; 36(1): 1-13, 2022 02.
Article in English | MEDLINE | ID: mdl-32648168

ABSTRACT

PURPOSE: Mitochondrial reactive oxygen species (ROS) production upon reperfusion of ischemic tissue initiates the ischemia/reperfusion (I/R) injury associated with heart attack. During ischemia, succinate accumulates and its oxidation upon reperfusion by succinate dehydrogenase (SDH) drives ROS production. Inhibition of succinate accumulation and/or oxidation by dimethyl malonate (DMM), a cell permeable prodrug of the SDH inhibitor malonate, can decrease I/R injury. However, DMM is hydrolysed slowly, requiring administration to the heart prior to ischemia, precluding its administration to patients at the point of reperfusion, for example at the same time as unblocking a coronary artery following a heart attack. To accelerate malonate delivery, here we developed more rapidly hydrolysable malonate esters. METHODS: We synthesised a series of malonate esters and assessed their uptake and hydrolysis by isolated mitochondria, C2C12 cells and in mice in vivo. In addition, we assessed protection against cardiac I/R injury by the esters using an in vivo mouse model of acute myocardial infarction. RESULTS: We found that the diacetoxymethyl malonate diester (MAM) most rapidly delivered large amounts of malonate to cells in vivo. Furthermore, MAM could inhibit mitochondrial ROS production from succinate oxidation and was protective against I/R injury in vivo when added at reperfusion. CONCLUSIONS: The rapidly hydrolysed malonate prodrug MAM can protect against cardiac I/R injury in a clinically relevant mouse model.


Subject(s)
Cardiotonic Agents/pharmacology , Malonates/pharmacology , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/drug therapy , Animals , Cardiotonic Agents/chemical synthesis , Cardiotonic Agents/chemistry , Cell Line , Disease Models, Animal , Esters/chemistry , Female , Humans , Male , Malonates/chemical synthesis , Malonates/chemistry , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Myocardial Reperfusion Injury/physiopathology , Prodrugs , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Succinic Acid/metabolism
15.
Elife ; 102021 12 23.
Article in English | MEDLINE | ID: mdl-34939929

ABSTRACT

The Tricarboxylic Acid (TCA) Cycle is arguably the most critical metabolic cycle in physiology and exists as an essential interface coordinating cellular metabolism, bioenergetics, and redox homeostasis. Despite decades of research, a comprehensive investigation into the consequences of TCA cycle dysfunction remains elusive. Here, we targeted two TCA cycle enzymes, fumarate hydratase (FH) and succinate dehydrogenase (SDH), and combined metabolomics, transcriptomics, and proteomics analyses to fully appraise the consequences of TCA cycle inhibition (TCAi) in murine kidney epithelial cells. Our comparative approach shows that TCAi elicits a convergent rewiring of redox and amino acid metabolism dependent on the activation of ATF4 and the integrated stress response (ISR). Furthermore, we also uncover a divergent metabolic response, whereby acute FHi, but not SDHi, can maintain asparagine levels via reductive carboxylation and maintenance of cytosolic aspartate synthesis. Our work highlights an important interplay between the TCA cycle, redox biology, and amino acid homeostasis.


Subject(s)
Activating Transcription Factor 4/metabolism , Citric Acid Cycle/physiology , Fumarate Hydratase/metabolism , Succinate Dehydrogenase/metabolism , Amino Acids/metabolism , Animals , Cells, Cultured , Citric Acid Cycle/genetics , Kidney/metabolism , Metabolome , Mice , Oxidation-Reduction , RNA Interference
16.
Free Radic Biol Med ; 166: 287-296, 2021 04.
Article in English | MEDLINE | ID: mdl-33675958

ABSTRACT

Mitochondria are essential signaling organelles that regulate a broad range of cellular processes and thereby heart function. Multiple mechanisms participate in the communication between mitochondria and the nucleus that maintain cardiomyocyte homeostasis, including mitochondrial reactive oxygen species (ROS) and metabolic shifts in TCA cycle metabolite availability. An increased rate of ROS generation can cause irreversible damage to the cell and proposed to be a leading cause of many pathologies, including accelerated aging and heart disease. Myocardial impairments are also characterised by specific coordinated metabolic changes and dysregulated inflammatory responses. Hence, the mitochondrial respiratory chain is an important mediator between health and disease in the heart. This review will first outline the sources of ROS in the heart, mitochondrial metabolite dynamics, and provide an overview of their implications for heart disease. In addition, we will concentrate our discussion around current cardioprotective strategies relevant to mitochondrial ROS. Thorough understanding of mitochondrial signaling and the complex interplay with vital signaling pathways in the heart might allow us to develop novel therapeutic approaches to cardiovascular disease.


Subject(s)
Mitochondria , Oxidative Stress , Citric Acid Cycle , Mitochondria/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism
17.
Redox Biol ; 41: 101884, 2021 05.
Article in English | MEDLINE | ID: mdl-33561740

ABSTRACT

DJ-1 is a multifaceted protein with pleiotropic functions that has been implicated in multiple diseases, ranging from neurodegeneration to cancer and ischemia-reperfusion injury. Ischemia is a complex pathological state arising when tissues and organs do not receive adequate levels of oxygen and nutrients. When the blood flow is restored, significant damage occurs over and above that of ischemia alone and is termed ischemia-reperfusion injury. Despite great efforts in the scientific community to ameliorate this pathology, its complex nature has rendered it challenging to obtain satisfactory treatments that translate to the clinic. In this review, we will describe the recent findings on the participation of the protein DJ-1 in the pathophysiology of ischemia-reperfusion injury, firstly introducing the features and functions of DJ-1 and, successively highlighting the therapeutic potential of the protein.


Subject(s)
Reperfusion Injury , Animals , Disease Models, Animal , Ischemia , Protein Deglycase DJ-1 , Reactive Oxygen Species
18.
Nat Commun ; 12(1): 707, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514727

ABSTRACT

Mitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia-reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the "deactive" state, usually formed only after prolonged inactivity. Despite its tendency to adopt the "deactive" state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.


Subject(s)
Electron Transport Complex I/ultrastructure , Mitochondria/pathology , Myocardial Reperfusion Injury/pathology , NADH Dehydrogenase/genetics , Reactive Oxygen Species/metabolism , Amino Acid Substitution , Animals , Cryoelectron Microscopy , DNA, Mitochondrial/genetics , Disease Models, Animal , Disease Resistance/genetics , Electron Transport/genetics , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Humans , Isolated Heart Preparation , Leucine/genetics , Male , Mice , Mice, Transgenic , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/pathology , Myocardial Reperfusion Injury/genetics , NAD/metabolism , NADH Dehydrogenase/metabolism , NADH Dehydrogenase/ultrastructure , Oxidation-Reduction , Point Mutation , Proline/genetics
19.
Cardiovasc Res ; 117(4): 1188-1201, 2021 03 21.
Article in English | MEDLINE | ID: mdl-32766828

ABSTRACT

AIMS: Succinate accumulates several-fold in the ischaemic heart and is then rapidly oxidized upon reperfusion, contributing to reactive oxygen species production by mitochondria. In addition, a significant amount of the accumulated succinate is released from the heart into the circulation at reperfusion, potentially activating the G-protein-coupled succinate receptor (SUCNR1). However, the factors that determine the proportion of succinate oxidation or release, and the mechanism of this release, are not known. METHODS AND RESULTS: To address these questions, we assessed the fate of accumulated succinate upon reperfusion of anoxic cardiomyocytes, and of the ischaemic heart both ex vivo and in vivo. The release of accumulated succinate was selective and was enhanced by acidification of the intracellular milieu. Furthermore, pharmacological inhibition, or haploinsufficiency of the monocarboxylate transporter 1 (MCT1) significantly decreased succinate efflux from the reperfused heart. CONCLUSION: Succinate release upon reperfusion of the ischaemic heart is mediated by MCT1 and is facilitated by the acidification of the myocardium during ischaemia. These findings will allow the signalling interaction between succinate released from reperfused ischaemic myocardium and SUCNR1 to be explored.


Subject(s)
Mitochondria, Heart/metabolism , Monocarboxylic Acid Transporters/metabolism , Myocardial Infarction/therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion/adverse effects , Myocytes, Cardiac/metabolism , Succinic Acid/metabolism , Symporters/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Female , Isolated Heart Preparation , Male , Metabolome , Mice, Inbred C57BL , Mice, Knockout , Monocarboxylic Acid Transporters/genetics , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/genetics , Oxidation-Reduction , Rats , Reactive Oxygen Species/metabolism , Receptors, G-Protein-Coupled/metabolism , Sus scrofa , Symporters/genetics , Time Factors
20.
J Biol Chem ; 296: 100169, 2021.
Article in English | MEDLINE | ID: mdl-33298526

ABSTRACT

The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of genes involved in antioxidant defenses to modulate fundamental cellular processes such as mitochondrial function and GSH metabolism. Previous reports proposed that mitochondrial reactive oxygen species production and disruption of the GSH pool activate the Nrf2 pathway, suggesting that Nrf2 senses mitochondrial redox signals and/or oxidative damage and signals to the nucleus to respond appropriately. However, until now, it has not been possible to disentangle the overlapping effects of mitochondrial superoxide/hydrogen peroxide production as a redox signal from changes to mitochondrial thiol homeostasis on Nrf2. Recently, we developed mitochondria-targeted reagents that can independently induce mitochondrial superoxide and hydrogen peroxide production mitoParaquat (MitoPQ) or selectively disrupt mitochondrial thiol homeostasis MitoChlorodinitrobenzoic acid (MitoCDNB). Using these reagents, here we have determined how enhanced generation of mitochondrial superoxide and hydrogen peroxide or disruption of mitochondrial thiol homeostasis affects activation of the Nrf2 system in cells, which was assessed by the Nrf2 protein level, nuclear translocation, and expression of its target genes. We found that selective disruption of the mitochondrial GSH pool and inhibition of its thioredoxin system by MitoCDNB led to Nrf2 activation, whereas using MitoPQ to enhance the production of mitochondrial superoxide and hydrogen peroxide alone did not. We further showed that Nrf2 activation by MitoCDNB requires cysteine sensors of Kelch-like ECH-associated protein 1 (Keap1). These findings provide important information on how disruption to mitochondrial redox homeostasis is sensed in the cytoplasm and signaled to the nucleus.


Subject(s)
Kelch-Like ECH-Associated Protein 1/metabolism , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Sulfhydryl Compounds/metabolism , Superoxides/metabolism , Animals , Cells, Cultured , Cysteine/metabolism , Glutathione/metabolism , Homeostasis , Mice , Mitochondria/pathology , Oxidation-Reduction , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...