Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 231: 109467, 2023 06.
Article in English | MEDLINE | ID: mdl-37031874

ABSTRACT

The polymer coated polymeric (PCP) microneedles (MNs) is a novel approach for controlled delivery of drugs (without allowing release of the excipients) to the target site. PCP MNs was explored as an approach to deliver the drug intravitreally to minimize the risks associated with conventional intravitreal injections. The core MNs was fabricated with polyvinyl pyrrolidone K30 (PVP K30) and coating was with Eudragit E100. Preformulation studies revealed that the films prepared using Eudragit E 100 exhibited excellent integrity in the physiological medium after prolonged exposure. FTIR studies were performed to investigate the possible interaction between the API and the polymer. The PCP MNs fabricated with different drug loads (dexamethasone sodium phosphate) were subjected to in vitro drug release studies. The drug release from uncoated MNs was instantaneous and complete. On the other hand, a controlled release profile was observed in case of PCP MNs. Likewise, even in the ex vivo porcine eye model, the drug release was gradual into the vitreous humor in case of PCP MNs. The uncoated microneedles released all the drug instantaneously where the PCP MNs retarded the release up to 3 h.


Subject(s)
Drug Delivery Systems , Polymers , Swine , Animals , Pharmaceutical Preparations , Povidone , Dexamethasone , Needles
2.
AAPS PharmSciTech ; 24(3): 76, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899180

ABSTRACT

Pharmaceutical industries and drug regulatory agencies are inclining towards continuous manufacturing due to better control over the processing conditions and in view to improve product quality. In the present work, continuous manufacturing of O/W emulgel by melt extrusion process was explored using lidocaine as an active pharmaceutical ingredient. Emulgel was characterized for pH, water activity, globule size distribution, and in vitro release rate. Additionally, effect of temperature (25°C and 60°C) and screw speed (100, 300, and 600 rpm) on the globule size and in vitro release rate was studied. Results indicated that at a given temperature, emulgel prepared under screw speed of 300 rpm resulted in products with smaller globules and faster drug release.


Subject(s)
Chemistry, Pharmaceutical , Hot Temperature , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Drug Liberation , Water
3.
AAPS PharmSciTech ; 24(1): 9, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36450897

ABSTRACT

Polymeric microneedles were prepared with Polyvinyl Pyrrolidone (PVP) K-30 using the mold casting technique. The core microneedles were coated with Eudragit E-100 by dip and spin method. The amount of 5-fluorouracil (FU) loaded in the core microneedles was 604 ± 35.4 µg. The coating thickness was 24.12 ± 1.12 µm. The objective was to deliver the 5-FU gradually in a controlled release manner at the target site in the sub-stratum corneum layer. This approach is anticipated to improve the safety and efficacy of topical melanoma treatment. The release of the drug was prolonged for up to 3 h from the polymer-coated polymeric (PCP) microneedles. The entire amount was found to release within 15 min in uncoated MNs. Likewise, the permeation of the drug from the uncoated microneedles was rapid, whereas the PCP microneedles were able to prolong the permeation up to 420 min. The PCP microneedles were subjected to stability studies at 25°C ± 2°C/60%RH, and 40°C ± 2°C/75%RH condition for 3 months. The formulations were found intact, and the release rate was not significantly different form the fresh formulation. The drug content was found to meet the acceptability criteria as well (98.12 ± 1.8% and 97.8 ± 2.1% at 25 and 40°C respectively after 3 months). Overall, this study demonstrated the feasibility of fabrication of PCP microneedles using Eudragit E100 for intraregional controlled delivery of drugs.


Subject(s)
Fluorouracil , Melanoma , Humans , Polymers , Povidone , Epidermis
SELECTION OF CITATIONS
SEARCH DETAIL