Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 172: 116226, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301421

ABSTRACT

Alzheimer's disease (AD) is characterized by the presence of two critical pathogenic factors: amyloid-ß (Aß) and tau. Aß and tau become neurotoxic aggregates via self-assembly, and these aggregates contribute to the pathogenesis of AD. Therefore, there has been growing interest in therapeutic strategies that simultaneously target Aß and tau aggregates. Although neferine has attracted attention as a suitable candidate agent for alleviating AD pathology, there has been no study investigating whether neferine affects the modulation of Aß or tau aggregation/dissociation. Herein, we investigated the dual regulatory effects of neferine on Aß and tau aggregation/dissociation. We predicted the binding characteristics of neferine to Aß and tau using molecular docking simulations. Next, thioflavin T and atomic force microscope analyses were used to evaluate the effects of neferine on the aggregation or dissociation of Aß42 and tau K18. We verified the effect of neferine on Aß fibril degradation using a microfluidic device. In addition, molecular dynamics simulation was used to predict a conformational change in the Aß42-neferine complex. Moreover, we examined the neuroprotective effect of neferine against neurotoxicity induced by Aß and tau and their fibrils in HT22 cells. Finally, we foresaw the pharmacokinetic properties of neferine. These results demonstrated that neferine, which has attracted attention as a potential treatment for AD, can directly affect Aß and tau pathology.


Subject(s)
Alzheimer Disease , Benzylisoquinolines , Neurotoxicity Syndromes , Humans , Molecular Docking Simulation , Amyloid beta-Peptides , Alzheimer Disease/drug therapy , Lab-On-A-Chip Devices , Technology
2.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37958841

ABSTRACT

Natural flavone and isoflavone analogs such as 3',4',7-trihydroxyflavone (1), 3',4',7-trihydroxyisoflavone (2), and calycosin (3) possess significant neuroprotective activity in Alzheimer's and Parkinson's disease. This study highlights the in vitro human monoamine oxidase (hMAO) inhibitory potential and functional effect of those natural flavonoids at dopamine and serotonin receptors for their possible role in neuroprotection. In vitro hMAO inhibition and enzyme kinetics studies were performed using a chemiluminescent assay. The functional effect of three natural flavonoids on dopamine and serotonin receptors was tested via cell-based functional assays followed by a molecular docking simulation to predict interactions between a compound and the binding site of the target protein. A forced swimming test was performed in the male C57BL/6 mouse model. Results of in vitro chemiluminescent assays and enzyme kinetics depicted 1 as a competitive inhibitor of hMAO-A with promising potency (IC50 value: 7.57 ± 0.14 µM) and 3 as a competitive inhibitor of hMAO-B with an IC50 value of 7.19 ± 0.32 µM. Likewise, GPCR functional assays in transfected cells showed 1 as a good hD4R antagonist. In docking analysis, these active flavonoids interacted with a determinant-interacting residue via hydrophilic and hydrophobic interactions, with low docking scores comparable to reference ligands. The post-oral administration of 1 to male C57BL/6 mice did not reduce the immobility time in the forced swimming test. The results of this study suggest that 1 and 3 may serve as effective regulators of the aminergic system via hMAO inhibition and the hD4R antagonist effect, respectively, for neuroprotection. The route of administration should be considered.


Subject(s)
Dopamine , Flavonoids , Mice , Animals , Humans , Male , Flavonoids/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Molecular Docking Simulation , Neuroprotection , Mice, Inbred C57BL , Monoamine Oxidase/metabolism , Receptors, Serotonin , Structure-Activity Relationship , Molecular Structure
3.
ACS Omega ; 8(7): 6538-6549, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36844518

ABSTRACT

Aglycone- and glycoside-derived forms of flavonoids exist broadly in plants and foods such as fruits, vegetables, and peanuts. However, most studies focus on the bioavailability of flavonoid aglycone rather than its glycosylated form. Kaempferol-3-O-ß-d-glucuronate (K3G) is a natural flavonoid glycoside obtained from various plants that have several biological activities, including antioxidant and anti-inflammatory effects. However, the molecular mechanism related to the antioxidant and antineuroinflammatory activity of K3G has not yet been demonstrated. The present study was designed to demonstrate the antioxidant and antineuroinflammatory effect of K3G against lipopolysaccharide (LPS)-stimulated BV2 microglial cells and to evaluate the underlying mechanism. Cell viability was determined by MTT assay. The inhibition rate of reactive oxygen species (ROS) and the production of pro-inflammatory mediators and cytokines were measured by DCF-DA assay, Griess assay, enzyme-linked immunosorbent assay (ELISA), and western blotting. K3G inhibited the LPS-induced release of nitric oxide, interleukin (IL)-6, and tumor necrosis factor-α (TNF-α) as well as the expression of prostaglandin E synthase 2. Additionally, K3G reduced the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB) related proteins. Mechanistic studies found that K3G downregulated phosphorylated mitogen-activated protein kinases (MAPKs) and upregulated the Nrf2/HO-1 signaling cascade. In this study, we demonstrated the effects of K3G on antineuroinflammation by inactivating phosphorylation of MPAKs and on antioxidants by upregulating the Nrf2/HO-1 signaling pathway through decreasing ROS in LPS-stimulated BV2 cells.

4.
Biomed Pharmacother ; 156: 113865, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36242849

ABSTRACT

A prominent characteristic of Alzheimer's disease (AD) is the deposition of both amyloid-ß (Aß) peptide and tau protein in the brain. Aß and tau not only induce toxicity through self-aggregation but also induce more potent toxicity through the synergistic action of Aß and tau. In particular, neurotoxic aggregates of Aß and tau directly affect several AD pathologies including neuroinflammation and cognitive decline. Therefore, there is increasing interest in strategies to modulate the aggregation and dissociation of Aß and tau for treatment of AD. Our recent study found that Uncaria rhynchophylla (UR) has a therapeutic effect on AD via the inhibition of Aß aggregation and attenuating Aß-mediated pathogenesis of AD. However, no studies have investigated whether UR has anti- and disaggregation effects on both Aß and tau. In this study, we showed the significant effects of UR on aggregation and dissociation of Aß42 and tau K18 using a thioflavin T (ThT) assay. In addition, histological study revealed an inhibitory effect of UR on the accumulation of Aß and tau and AD-related pathologies in 3xTg mice with both Aß and tau pathology. Furthermore, we found that rhynchophylline and corynoxeine, bioactive components of UR, could modulate the aggregation and dissociation of both Aß and tau using molecular docking simulation, isothermal titration calorimetry, and ThT assays. In conclusion, our results demonstrate that UR can inhibit the aggregation of Aß and tau and promote the degradation of their aggregates in AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Mice , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Molecular Docking Simulation , Mice, Transgenic , Alzheimer Disease/metabolism
5.
Phytochemistry ; 197: 113100, 2022 May.
Article in English | MEDLINE | ID: mdl-35144153

ABSTRACT

In this study, we present the first investigation of Hedera rhombea Bean fruit, which led to the isolation of six undescribed compounds including two megastigmane glucosides, two rare 1,4-dioxane neolignanes, and two quinic acid derivatives, together with 26 known compounds. Their structures and absolute configurations were elucidated by extensive analysis of NMR spectroscopic data, HRMS, and ECD calculations. This is the first report on the isolation of methyl 3-O-caffeoyl-5-O-p-coumaroylquinate from a natural source. Among the isolated compounds, falcarindiol and caffeoyltryptophan showed significant PTP1B inhibition with IC50 values of 7.32 and 16.99 µM, respectively, compared to those of the positive controls [sodium orthovanadate (IC50 = 17.96 µM) and ursolic acid (IC50 = 4.53 µM)]. These two compounds along with several other compounds displayed significant α-glucosidase inhibitions with IC50 values ranging from 12.88 to 91.89 µM, stronger than that of the positive control (acarbose, IC50 = 298.07 µM). Enzyme kinetic analysis indicated that caffeoyltryptophan and falcarindiol displayed competitive and mixed-type PTP1B inhibition, respectively, whereas the α-glucosidase inhibition type was mixed-type for caffeoyltryptophan and uncompetitive (rarely reported for a-glucosidase inhibitors) for falcarindiol. In addition, molecular docking results showed that these active compounds exhibited good binding affinities toward both PTP1B and α-glucosidase with negative binding energies. The results of the present study demonstrate that these active compounds might be beneficial in the treatment of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Hedera , Fruit/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Hedera/metabolism , Kinetics , Molecular Docking Simulation , Molecular Structure , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , alpha-Glucosidases/metabolism
6.
ACS Omega ; 6(49): 33443-33453, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926894

ABSTRACT

Alterations in the expression and/or activity of brain G-protein-coupled receptors (GPCRs) such as dopamine D1R, D2LR, D3R, and D4R, vasopressin V1AR, and serotonin 5-HT1AR are noted in various neurodegenerative diseases (NDDs). Since studies have indicated that flavonoids can target brain GPCRs and provide neuroprotection via inhibition of monoamine oxidases (hMAOs), our study explored the functional role of kurarinone, an abundant lavandulated flavonoid in Sophora flavescens, on dopamine receptor subtypes, V1AR, 5-HT1AR, and hMAOs. Radioligand binding assays revealed considerable binding of kurarinone on D1R, D2LR, and D4R. Functional GPCR assays unfolded the compound's antagonist behavior on D1R (IC50 42.1 ± 0.35 µM) and agonist effect on D2LR and D4R (EC50 22.4 ± 3.46 and 71.3 ± 4.94 µM, respectively). Kurarinone was found to inhibit hMAO isoenzymes in a modest and nonspecific manner. Molecular docking displayed low binding energies during the intermolecular interactions of kurarinone with the key residues of the deep orthosteric binding pocket and the extracellular loops of D1R, D2LR, and D4R, validating substantial binding affinities to these prime targets. With appreciable D2LR and D4R agonism and D1R antagonism, kurarinone might be a potential compound that can alleviate clinical symptoms of Parkinson's disease and other NDDs.

7.
Sci Rep ; 11(1): 23528, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876600

ABSTRACT

Isoliquiritigenin (= 4,2',4'-Trihydroxychalcone) (ILG) is a major constituent of the Glycyrrhizae Rhizoma that has significant neuroprotective functions. In the present study, we re-examined the potential of ILG to inhibit human monoamine oxidase (hMAO) in vitro and established its mechanism of inhibition through a kinetics study and molecular docking examination. ILG showed competitive inhibition of hMAO-A and mixed inhibition of hMAO-B with IC50 values of 0.68 and 0.33 µM, respectively, which varied slightly from the reported IC50 values. Since ILG has been reported to reduce dopaminergic neurodegeneration and psychostimulant-induced toxicity (both of which are related to dopamine and vasopressin receptors), we investigated the binding affinity and modulatory functions of ILG on dopamine and vasopressin receptors. ILG was explored as an antagonist of the D1 receptor and an agonist of the D3 and V1A receptors with good potency. An in silico docking investigation revealed that ILG can interact with active site residues at target receptors with low binding energies. These activities of ILG on hMAO and brain receptors suggest the potential role of the compound to ameliorate dopaminergic deficits, depression, anxiety, and associated symptoms in Parkinson's disease and other neuronal disorders.


Subject(s)
Chalcones/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D3/metabolism , Receptors, Vasopressin/metabolism , Catalytic Domain/physiology , Humans , Molecular Docking Simulation/methods , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism
8.
Biomolecules ; 11(7)2021 07 08.
Article in English | MEDLINE | ID: mdl-34356625

ABSTRACT

Monoamine oxidases (MAOs) and muscarinic acetylcholine receptors (mAChRs) are considered important therapeutic targets for Parkinson's disease (PD). Lipophilic tanshinones are major phytoconstituents in the dried roots of Salvia miltiorrhiza that have demonstrated neuroprotective effects against dopaminergic neurotoxins and the inhibition of MAO-A. Since MAO-B inhibition is considered an effective therapeutic strategy for PD, we tested the inhibitory activities of three abundant tanshinone congeners against recombinant human MAO (hMAO) isoenzymes through in vitro experiments. In our study, tanshinone I (1) exhibited the highest potency against hMAO-A, followed by tanshinone IIA and cryptotanshinone, with an IC50 less than 10 µM. They also suppressed hMAO-B activity, with an IC50 below 25 µM. Although tanshinones are known to inhibit hMAO-A, their enzyme inhibition mechanism and binding sites have yet to be investigated. Enzyme kinetics and molecular docking studies have revealed the mode of inhibition and interactions of tanshinones during enzyme inhibition. Proteochemometric modeling predicted mAChRs as possible pharmacological targets of 1, and in vitro functional assays confirmed the selective M4 antagonist nature of 1 (56.1% ± 2.40% inhibition of control agonist response at 100 µM). These findings indicate that 1 is a potential therapeutic molecule for managing the motor dysfunction and depression associated with PD.


Subject(s)
Abietanes , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Phenanthrenes , Receptor, Muscarinic M4 , Salvia miltiorrhiza/chemistry , Abietanes/chemistry , Abietanes/pharmacology , Animals , CHO Cells , Cricetulus , Humans , Monoamine Oxidase/chemistry , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Receptor, Muscarinic M4/antagonists & inhibitors , Receptor, Muscarinic M4/chemistry , Receptor, Muscarinic M4/genetics , Receptor, Muscarinic M4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...