Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(737): eadh1988, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446900

ABSTRACT

Despite the advances in cancer treatment achieved, for example, by the CD20 antibody rituximab, an urgent medical need remains to optimize the capacity of such antibodies to induce antibody-dependent cellular cytotoxicity (ADCC) that determines therapeutic efficacy. The cytokine IL-15 stimulates proliferation, activation, and cytolytic capacity of NK cells, but broad clinical use is prevented by short half-life, poor accumulation at the tumor site, and severe toxicity due to unspecific immune activation. We here report modified immunocytokines consisting of Fc-optimized CD19 and CD20 antibodies fused to an IL-15 moiety comprising an L45E-E46K double mutation (MIC+ format). The E46K mutation abrogated binding to IL-15Rα, thereby enabling substitution of physiological trans-presentation by target binding and thus conditional IL-15Rßγ stimulation, whereas the L45E mutation optimized IL-15Rßγ agonism and producibility. In vitro analysis of NK activation, anti-leukemia reactivity, and toxicity using autologous and allogeneic B cells confirmed target-dependent function of MIC+ constructs. Compared with Fc-optimized CD19 and CD20 antibodies, MIC+ constructs mediated superior target cell killing and NK cell proliferation. Mouse models using luciferase-expressing human NALM-6 lymphoma cells, patient acute lymphoblastic leukemia (ALL) cells, and murine EL-4 lymphoma cells transduced with human CD19/CD20 as targets and human and murine NK cells as effectors, respectively, confirmed superior and target-dependent anti-leukemic activity. In summary, MIC+ constructs combine the benefits of Fc-optimized antibodies and IL-15 cytokine activity and mediate superior NK cell immunity with potentially reduced side effects. They thus constitute a promising new immunotherapeutic approach shown here for B cell malignancies.


Subject(s)
Interleukin-15 , Lymphoma , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing , Antibodies , Antigens, CD19 , Cytokines , Immunoglobulin Fc Fragments
2.
Mol Ther ; 31(4): 1033-1045, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36793213

ABSTRACT

T cell-based immunotherapy has revolutionized oncological treatment. However, many patients do not respond to treatment, and long-term remissions remain rare, particularly in gastrointestinal cancers like colorectal cancer (CRC). B7-H3 is overexpressed in multiple cancer entities including CRC on both tumor cells and tumor vasculature, the latter facilitating influx of effector cells into the tumor site upon therapeutic targeting. We generated a panel of T cell-recruiting B7-H3xCD3 bispecific antibodies (bsAbs) and show that targeting a membrane-proximal B7-H3 epitope allows for a 100-fold reduction of CD3 affinity. In vitro, our lead compound CC-3 showed superior tumor cell killing, T cell activation, proliferation, and memory formation, whereas undesired cytokine release was reduced. In vivo, CC-3 mediated potent antitumor activity in three independent models using immunocompromised mice adoptively transferred with human effector cells with regard to prevention of lung metastasis and flank tumor growth as well as elimination of large established tumors. Thus, fine-tuning of both target and CD3 affinities as well as binding epitopes allowed for the generation of a B7-H3xCD3 bsAbs with promising therapeutic activity. CC-3 is presently undergoing good manufacturing practice (GMP) production to enable evaluation in a clinical "first-in-human" study in CRC.


Subject(s)
Antibodies, Bispecific , Gastrointestinal Neoplasms , Humans , Mice , Animals , Immunoglobulin G , T-Lymphocytes , Gastrointestinal Neoplasms/therapy , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Immunotherapy , Cell Line, Tumor
3.
J Emerg Med ; 45(3): 361-5, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23827164

ABSTRACT

BACKGROUND: Bath salts commonly contain multiple synthetic drugs, and their toxic effects are largely the same as those seen in patients who have taken large doses of amphetamines. Bath salts can be ingested, smoked, or administered intravenously. Their use is on the rise and is responsible for a large number of emergency department visits. CASE REPORT: Our case series involved five patients (six hospital courses) who presented after ingesting bath salts. The presentations involved signs and symptoms of intense sympathetic response. All patients had a history of drug abuse, and most had psychiatric disorders as well. Treatments included benzodiazepines, mechanical ventilation, and intravenous hydration. CONCLUSION: Bath salts are available for approximately $20 (USD) in packets at truck stops and on the Internet, usually marketed with the disclaimer, "not for human consumption." Their presentation mimics other sympathetic drugs and causes a significant amount of delirium, hallucinogenic-delusional symptoms, extreme agitation, combativeness, and rhabdomyolysis, often leading to hospitalizations and intensive care unit (ICU) stays. Management is largely supportive and includes aggressive intravenous hydration, dampening of the excessive sympathetic outflow with benzodiazepines, and close monitoring in the ICU setting. The U.S. Drug Enforcement Administration (DEA) recently invoked its emergency scheduling authority to control these synthetic stimulants. The DEA plans to make possessing and selling these chemicals, or products that contain them, illegal in the United States.


Subject(s)
Central Nervous System Stimulants/poisoning , Designer Drugs/poisoning , Illicit Drugs/poisoning , Mental Disorders/complications , Adult , Aggression , Akathisia, Drug-Induced/etiology , Benzodiazepines/therapeutic use , Hallucinations/chemically induced , Humans , Male , Poisoning/therapy
4.
Interdiscip Sci ; 4(4): 273-81, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23354816

ABSTRACT

Though tetanus is an old disease with well known medicines, its complications are still a serious issue worldwide. Tetanus is mainly due to a powerful neurotoxin, tetanolysin-O, produced by a Gram positive anaerobic bacterium, Clostridium tetani. The toxin has a thiol-activated cytolysin which causes lysis of human platelets, lysosomes and a variety of subcellular membranes. The existing therapy seems to have challenged as available vaccines are not so effective and the bacteria developed resistance to many drugs. Computer aided approach is a novel platform to screen drug targets and design potential inhibitors. The three dimensional structure of the toxin is essential for structure based drug design. But the structure of tetanolysin-O is not available in its native form. Moreover, the interaction and pharmacological activities of current drugs against tetanolysin-O is not clear. Hence, there is need for three dimensional model of the toxin. The model was generated by homology modeling using crystal structure of perfringolysin-O, chain-A (PDB ID: 1PFO) as the template. The modeled structure has 22.7% α helices, 27.51% ß sheets and 41.75% random coils. A thiol-activated cytolysin was predicted in the region of 105 to 1579, which acts as a functional domain of the toxin. The hypothetical model showed the backbone root mean square deviation (RMSD) value of 0.6 Å and the model was validated by ProCheck. The Ramachandran plot of the model accounts for 92.3% residues in the most allowed region. The model was further refined by various tools and deposited to Protein Model Database (PMDB ID: PM0077550). The model was used as the drug target and the interaction of various lead molecules with protein was studied by molecular docking. We have selected phytoligands based on literatures and pharmacophoric studies. The efficiency of herbal compounds and chemical leads was compared. Our study concluded that herbal derivatives such as berberine (7, 8, 13, 13a-tetradehydro-9,10-dimethoxy-2,3 [methylenebis(oxy)] berbinium), curcumin ((1E,6E)-1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), coumarin (2H-chromen-2-one), catechol (Benzene-1,2-diol) and diosphenol (2-hydroxy-3-methyl-6-propan-2-ylcyclohex-2-en-1-one) are the best inhibitors compared to known chemicals. Hence, these leads can be used as potential inhibitors against tetanolysin.


Subject(s)
Clostridium tetani , Drug Design , Phytotherapy , Plant Extracts/pharmacology , Tetanus Toxin , Tetanus/drug therapy , Bacterial Toxins/chemistry , Clostridium tetani/chemistry , Clostridium tetani/pathogenicity , Computer Simulation , Hemolysin Proteins/chemistry , Humans , Ligands , Models, Molecular , Perforin/chemistry , Plant Extracts/therapeutic use , Protein Structure, Secondary , Sulfhydryl Compounds/metabolism , Tetanus/microbiology , Tetanus Toxin/antagonists & inhibitors , Tetanus Toxin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...