Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1229703, 2023.
Article in English | MEDLINE | ID: mdl-38022565

ABSTRACT

Pregnenolone (P5) is synthesized as the first bioactive steroid in the mitochondria from cholesterol. Clusters of differentiation 4 (CD4+) and Clusters of differentiation 8 (CD8+) immune cells synthesize P5 de novo; P5, in turn, play important role in immune homeostasis and regulation. However, P5's biochemical mode of action in immune cells is still emerging. We envisage that revealing the complete spectrum of P5 target proteins in immune cells would have multifold applications, not only in basic understanding of steroids biochemistry in immune cells but also in developing new therapeutic applications. We employed a CLICK-enabled probe to capture P5-binding proteins in live T helper cell type 2 (Th2) cells. Subsequently, using high-throughput quantitative proteomics, we identified the P5 interactome in CD4+ Th2 cells. Our study revealed P5's mode of action in CD4+ immune cells. We identified novel proteins from mitochondrial and endoplasmic reticulum membranes to be the primary mediators of P5's biochemistry in CD4+ and to concur with our earlier finding in CD8+ immune cells. Applying advanced computational algorithms and molecular simulations, we were able to generate near-native maps of P5-protein key molecular interactions. We showed bonds and interactions between key amino acids and P5, which revealed the importance of ionic bond, hydrophobic interactions, and water channels. We point out that our results can lead to designing of novel molecular therapeutics strategies.


Subject(s)
Pregnenolone , Th2 Cells , Pregnenolone/metabolism , Pregnenolone/pharmacology , Th2 Cells/metabolism , Molecular Dynamics Simulation , Steroids , Carrier Proteins/metabolism
2.
Genes Immun ; 22(3): 125-140, 2021 07.
Article in English | MEDLINE | ID: mdl-34127827

ABSTRACT

Historically tools and technologies facilitated scientific discoveries. Steroid hormone research is not an exception. Unfortunately, the dramatic advancement of the field faded this research area and flagged it as a solved topic. However, it should have been the opposite. The area should glitter with its strong foundation and attract next-generation scientists. Over the past century, a myriad of new facts on biochemistry, molecular biology, cell biology, physiology and pathology of the steroid hormones was discovered. Several innovations were made and translated into life-saving treatment strategies such as synthetic steroids, and inhibitors of steroidogenesis and steroid signaling. Steroid molecules exhibit their diverse effects on cell metabolism, salt and water balance, development and function of the reproductive system, pregnancy, and immune-cell function. Despite vigorous research, the molecular basis of the immunomodulatory effect of steroids is still mysterious. The recent excitement on local extra-glandular steroidogenesis in regulating inflammation and immunity is revitalizing the topic with a new perspective. Therefore, here we review the role of steroidogenesis in regulating inflammation and immunity, discuss the unresolved questions, and how this area can bring another golden age of steroid hormone research with the development of new tools and technologies and advancement of the scientific methods.


Subject(s)
Signal Transduction , Steroids
3.
iScience ; 24(5): 102485, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34036248

ABSTRACT

Pregnenolone (P5) promotes prostate cancer cell growth, and de novo synthesis of intratumoural P5 is a potential cause of development of castration resistance. Immune cells can also synthesize P5 de novo. Despite its biological importance, little is known about P5's mode of actions, which appears to be context dependent and pleiotropic. A comprehensive proteome-wide spectrum of P5-binding proteins that are involved in its trafficking and functionality remains unknown. Here, we describe an approach that integrates chemical biology for probe synthesis with chemoproteomics to map P5-protein interactions in live prostate cancer cells and murine CD8+ T cells. We subsequently identified P5-binding proteins potentially involved in P5-trafficking and in P5's non-genomic action that may drive the promotion of castrate-resistance prostate cancer and regulate CD8+ T cell function. We envisage that this methodology could be employed for other steroids to map their interactomes directly in a broad range of living cells, tissues, and organisms.

4.
PLoS One ; 16(5): e0251233, 2021.
Article in English | MEDLINE | ID: mdl-34003838

ABSTRACT

The transcription factor Rora has been shown to be important for the development of ILC2 and the regulation of ILC3, macrophages and Treg cells. Here we investigate the role of Rora across CD4+ T cells in general, but with an emphasis on Th2 cells, both in vitro as well as in the context of several in vivo type 2 infection models. We dissect the function of Rora using overexpression and a CD4-conditional Rora-knockout mouse, as well as a RORA-reporter mouse. We establish the importance of Rora in CD4+ T cells for controlling lung inflammation induced by Nippostrongylus brasiliensis infection, and have measured the effect on downstream genes using RNA-seq. Using a systematic stimulation screen of CD4+ T cells, coupled with RNA-seq, we identify upstream regulators of Rora, most importantly IL-33 and CCL7. Our data suggest that Rora is a negative regulator of the immune system, possibly through several downstream pathways, and is under control of the local microenvironment.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Macrophages/immunology , Nuclear Receptor Subfamily 1, Group F, Member 1/immunology , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Pneumonia/immunology , Th2 Cells/immunology , Animals , Antigens, Helminth/immunology , Antigens, Helminth/metabolism , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Female , Gene Expression Regulation/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nippostrongylus/immunology , Pneumonia/parasitology , Pneumonia/pathology , Strongylida Infections/immunology , Strongylida Infections/parasitology
5.
Nat Commun ; 11(1): 3588, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32680985

ABSTRACT

Tumors subvert immune cell function to evade immune responses, yet the complex mechanisms driving immune evasion remain poorly understood. Here we show that tumors induce de novo steroidogenesis in T lymphocytes to evade anti-tumor immunity. Using a transgenic steroidogenesis-reporter mouse line we identify and characterize de novo steroidogenic immune cells, defining the global gene expression identity of these steroid-producing immune cells and gene regulatory networks by using single-cell transcriptomics. Genetic ablation of T cell steroidogenesis restricts primary tumor growth and metastatic dissemination in mouse models. Steroidogenic T cells dysregulate anti-tumor immunity, and inhibition of the steroidogenesis pathway is sufficient to restore anti-tumor immunity. This study demonstrates T cell de novo steroidogenesis as a mechanism of anti-tumor immunosuppression and a potential druggable target.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Melanoma/immunology , Steroids/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/immunology , Humans , Immune Evasion , Melanoma/genetics , Melanoma/metabolism , Mice , Mice, Knockout , Steroids/biosynthesis
6.
Cell Rep ; 31(7): 107628, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32433953

ABSTRACT

Here, using single-cell RNA sequencing, we examine the stromal compartment in murine melanoma and draining lymph nodes (LNs) at points across tumor development, providing data at http://www.teichlab.org/data/. Naive lymphocytes from LNs undergo activation and clonal expansion within the tumor, before PD1 and Lag3 expression, while tumor-associated myeloid cells promote the formation of a suppressive niche. We identify three temporally distinct stromal populations displaying unique functional signatures, conserved across mouse and human tumors. Whereas "immune" stromal cells are observed in early tumors, "contractile" cells become more prevalent at later time points. Complement component C3 is specifically expressed in the immune population. Its cleavage product C3a supports the recruitment of C3aR+ macrophages, and perturbation of C3a and C3aR disrupts immune infiltration, slowing tumor growth. Our results highlight the power of scRNA-seq to identify complex interplays and increase stromal diversity as a tumor develops, revealing that stromal cells acquire the capacity to modulate immune landscapes from early disease.


Subject(s)
Melanoma/immunology , Sequence Analysis, RNA/methods , Stromal Cells/metabolism , Tumor Microenvironment/immunology , Animals , Humans , Mice
7.
Cell ; 176(4): 882-896.e18, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30639098

ABSTRACT

T helper type 2 (Th2) cells are important regulators of mammalian adaptive immunity and have relevance for infection, autoimmunity, and tumor immunology. Using a newly developed, genome-wide retroviral CRISPR knockout (KO) library, combined with RNA-seq, ATAC-seq, and ChIP-seq, we have dissected the regulatory circuitry governing activation and differentiation of these cells. Our experiments distinguish cell activation versus differentiation in a quantitative framework. We demonstrate that these two processes are tightly coupled and are jointly controlled by many transcription factors, metabolic genes, and cytokine/receptor pairs. There are only a small number of genes regulating differentiation without any role in activation. By combining biochemical and genetic data, we provide an atlas for Th2 differentiation, validating known regulators and identifying factors, such as Pparg and Bhlhe40, as part of the core regulatory network governing Th2 helper cell fates.


Subject(s)
Receptor Cross-Talk/immunology , Th2 Cells/immunology , Th2 Cells/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Differentiation/genetics , Cell Differentiation/immunology , Chromatin , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome , High-Throughput Nucleotide Sequencing , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/metabolism , Transcription Factors/metabolism
8.
Genome Med ; 10(1): 76, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30355343

ABSTRACT

BACKGROUND: The IRE1a-XBP1 pathway is a conserved adaptive mediator of the unfolded protein response. The pathway is indispensable for the development of secretory cells by facilitating protein folding and enhancing secretory capacity. In the immune system, it is known to function in dendritic cells, plasma cells, and eosinophil development and differentiation, while its role in T helper cell is unexplored. Here, we investigated the role of the IRE1a-XBP1 pathway in regulating activation and differentiation of type-2 T helper cell (Th2), a major T helper cell type involved in allergy, asthma, helminth infection, pregnancy, and tumor immunosuppression. METHODS: We perturbed the IRE1a-XBP1 pathway and interrogated its role in Th2 cell differentiation. We performed genome-wide transcriptomic analysis of differential gene expression to reveal IRE1a-XBP1 pathway-regulated genes and predict their biological role. To identify direct target genes of XBP1 and define XBP1's regulatory network, we performed XBP1 ChIPmentation (ChIP-seq). We validated our predictions by flow cytometry, ELISA, and qPCR. We also used a fluorescent ubiquitin cell cycle indicator mouse to demonstrate the role of XBP1 in the cell cycle. RESULTS: We show that Th2 lymphocytes induce the IRE1a-XBP1 pathway during in vitro and in vivo activation. Genome-wide transcriptomic analysis of differential gene expression by perturbing the IRE1a-XBP1 pathway reveals XBP1-controlled genes and biological pathways. Performing XBP1 ChIPmentation (ChIP-seq) and integrating with transcriptomic data, we identify XBP1-controlled direct target genes and its transcriptional regulatory network. We observed that the IRE1a-XBP1 pathway controls cytokine secretion and the expression of two Th2 signature cytokines, IL13 and IL5. We also discovered that the IRE1a-XBP1 pathway facilitates activation-dependent Th2 cell proliferation by facilitating cell cycle progression through S and G2/M phase. CONCLUSIONS: We confirm and detail the critical role of the IRE1a-XBP1 pathway during Th2 lymphocyte activation in regulating cytokine expression, secretion, and cell proliferation. Our high-quality genome-wide XBP1 ChIP and gene expression data provide a rich resource for investigating XBP1-regulated genes. We provide a browsable online database available at http://data.teichlab.org .


Subject(s)
Cell Differentiation , Endoribonucleases/metabolism , Genome-Wide Association Study , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Stress, Physiological , Th2 Cells/cytology , X-Box Binding Protein 1/metabolism , Animals , Base Sequence , Cell Cycle , Cell Proliferation , Cytokines/metabolism , Endoribonucleases/genetics , Female , Gene Expression Regulation , Lymphocyte Activation/genetics , Mice, Inbred C57BL , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Up-Regulation/genetics , X-Box Binding Protein 1/genetics
10.
Genome Biol ; 17: 103, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27176874

ABSTRACT

BACKGROUND: Differentiation of lymphocytes is frequently accompanied by cell cycle changes, interplay that is of central importance for immunity but is still incompletely understood. Here, we interrogate and quantitatively model how proliferation is linked to differentiation in CD4+ T cells. RESULTS: We perform ex vivo single-cell RNA-sequencing of CD4+ T cells during a mouse model of infection that elicits a type 2 immune response and infer that the differentiated, cytokine-producing cells cycle faster than early activated precursor cells. To dissect this phenomenon quantitatively, we determine expression profiles across consecutive generations of differentiated and undifferentiated cells during Th2 polarization in vitro. We predict three discrete cell states, which we verify by single-cell quantitative PCR. Based on these three states, we extract rates of death, division and differentiation with a branching state Markov model to describe the cell population dynamics. From this multi-scale modelling, we infer a significant acceleration in proliferation from the intermediate activated cell state to the mature cytokine-secreting effector state. We confirm this acceleration both by live imaging of single Th2 cells and in an ex vivo Th1 malaria model by single-cell RNA-sequencing. CONCLUSION: The link between cytokine secretion and proliferation rate holds both in Th1 and Th2 cells in vivo and in vitro, indicating that this is likely a general phenomenon in adaptive immunity.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , Cell Differentiation , Cell Proliferation , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/physiology , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Female , Malaria/genetics , Mice , Mice, Inbred C57BL , Models, Biological , Transcriptome
11.
Proc Natl Acad Sci U S A ; 110(29): 11857-62, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23818590

ABSTRACT

Endocytic protein trafficking is directed by sorting signals on cargo molecules that are recognized by cytosolic adaptor proteins. However, the steps necessary to segregate the variety of cargoes during endocytosis remain poorly defined. Using Caenorhabditis elegans, we demonstrate that multiple plasma membrane endocytic adaptors function redundantly to regulate clathrin-mediated endocytosis and to recruit components of the endosomal sorting complex required for transport (ESCRT) machinery to the cell surface to direct the sorting of ubiquitin-modified substrates. Moreover, our data suggest that preassembly of cargoes with the ESCRT-0 complex at the plasma membrane enhances the efficiency of downstream sorting events in the endolysosomal system. In the absence of a heterooligomeric adaptor complex composed of FCHO, Eps15, and intersectin, ESCRT-0 accumulation at the cell surface is diminished, and the degradation of a ubiquitin-modified cargo slows significantly without affecting the rate of its clathrin-mediated internalization. Consistent with a role for the ESCRT machinery during cargo endocytosis, we further show that the ESCRT-0 complex accumulates at a subset of clathrin-coated pits on the surface of human cells. Our findings suggest a unique mechanism by which ubiquitin-modified cargoes are sequestered into the endolysosomal pathway.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Cell Membrane/metabolism , Endocytosis/physiology , Endosomal Sorting Complexes Required for Transport/metabolism , Animals , Caenorhabditis elegans , Fluorescent Antibody Technique , HeLa Cells , Humans , Immunoprecipitation , Mass Spectrometry , RNA Interference , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...