Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 252(Pt 1): 118786, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38537743

ABSTRACT

Industrial wastewater contains a wide range of pollutants that, if released directly into natural ecosystems, have the potential to pose serious risks to the environment.This study aims to investigate sustainable and efficient approaches for treating tannery wastewater, employing a combination of hyphenated Fenton oxidation and adsorption processes. Rigorous analyses were conducted on wastewater samples, evaluating parameters like COD, sulphide, NH3-N, PO43-, NO3-, and Cr(VI). The performance of this adsorbent material was gauged through column adsorption experiments. A comprehensive characterization of the adsorbent was undertaken using techniques such as SEM, EDX, BET, FTIR, XRD, and LIBS. The study delved into varying operational parameters like bed depth (ranging from 3.5 to 9.5 cm) diameter (2.5 cm) and influent flow rate (ranging from 5 to 15mLmin-1). The experimental outcomes revealed that increasing the bed depth and decreasing the influent flow rate significantly bolstered the adsorption column's effectiveness. Breakthrough curves obtained were fitted with different models, including the Thomas and Yoon-Nelson models. The most optimal column performance was achieved with a bed height of 10.5 cm and a flow rate of 5mLmin-1. The combined process achieved removal efficiencies of 94.5% for COD, 97.4% for sulphide, 96.2% for NH3-N, 83.1% for NO3-, 79.3% for PO43-, and 96.9% for Cr(VI) in tannery effluent. This research presents a notable stride toward the development of sustainable and efficient strategies for tannery wastewater treatment.


Subject(s)
Charcoal , Industrial Waste , Tanning , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Industrial Waste/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Wastewater/analysis , Wood/chemistry , Iron/chemistry , Hydrogen Peroxide/chemistry
2.
Environ Res ; 210: 112987, 2022 07.
Article in English | MEDLINE | ID: mdl-35219627

ABSTRACT

In the current investigation, the distribution and extent of human exposure of phthalate esters (PAEs) have been reported on global extent based on computed indices. The proposed indices were calculated based on environmental concentrations, toxicity, occurrence, environmental fate, and transport of PAEs. The cumulative phthalate exposure index (PEI) based on the phthalate pollution index (PPI) was mapped on a global scale based on the existing data reported in the literature. The results revealed that the PAEs are heterogeneously distributed globally, and about 30% of total environmental PAEs are ultimately exposed to the average human being. The comparative distribution of PAEs in various environmental compartments including urban-rural, indoor-outdoor, home-dormitory-classroom, and their exposure likelihood were studied based on indices. More than 90% of total human exposure of PAEs was observed to be from indoor environmental compartments. Significantly high exposure was observed in the urban population as compared to the rural population. About 70% of the total phthalate pollution sub-index of dust was observed from home followed by a classroom of ∼15% and then a dormitory of ∼10%. In addition, the indices were equated with the current human development index (HDI), gross national income (GNI), and exposure of particulate matter of each country. Based on current findings, the population living in the areas where >20 µg/m3 of particulate matter has been reported are possibly exposed with higher PAEs. The indices were highly diversified at high HDI (0.9) values and between 40,000 and 50,000 $ per capita income due to different usage of phthalate-containing products, disposal, and extensive monitoring work carried out by the developed and developing countries.


Subject(s)
Esters , Phthalic Acids , China , Dust/analysis , Esters/analysis , Humans , Particulate Matter , Phthalic Acids/analysis , Phthalic Acids/toxicity
3.
Environ Sci Process Impacts ; 23(3): 389-399, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33566875

ABSTRACT

A comprehensive review was performed on the environmental fate, environmental occurrence, toxicity, physical-chemical properties, abiotic and biotic removal and degradation of phthalate esters (PAEs) to compute the overall phthalate exposure and their impact on human beings. The removal and degradation of these wide spread pollutants by abiotic processes such as hydrolysis and photodecomposition are very slow and insignificant. On the other hand, the breakdown of PAEs by microorganisms is considered to be one of the major routes of environmental degradation for these widespread pollutants. Numerous microbial strains have been reported to degrade these compounds under aerobic, anaerobic and facultative conditions. Concurrently, the environmental fate, transport and transformation/degradation of these compounds under natural conditions are highly dependent on their physical and chemical properties. In order to understand the relationship between the concentrations of PAEs of different environmental compartments and human exposure prospects, a novel average phthalate pollution index (PPI) and cumulative phthalate exposure index (PEI) were proposed using the multivariate analysis approach. These indices were computed on the basis of relative importance, environmental occurrence, toxicity, physical-chemical properties, abiotic and biotic removal and degradation of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and diethyl-hexyl phthalate (DEHP). At present, the average PPI and cumulative PEI of 29 countries were evaluated using the concentrations of PAEs reported in the literature. These indices signify the overall phthalate pollution, human exposure and their interrelation. According to the index, Slovakia, Canada, Taiwan, Sweden and South Africa are among the top five countries in terms of cumulative phthalate exposure as per the existing data. The exposure percentage of total PAEs significantly varies between 23 and 44% since many environmental compartments are not directly exposed to human beings and they are degraded under natural conditions.


Subject(s)
Phthalic Acids , Water Pollutants, Chemical , Canada , Humans , Multivariate Analysis , South Africa , Sweden , Taiwan , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL