Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 713
Filter
1.
ACS Appl Mater Interfaces ; 16(19): 24274-24294, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699930

ABSTRACT

In the field of bone tissue engineering, recently developed Zn alloy scaffolds are considered potential candidates for biodegradable implants for bone regeneration and defect reconstruction. However, the clinical success of these alloys is limited due to their insufficient surface bioactivities. Further, the higher concentration of Zn2+ produced during degradation promotes antibacterial activity, but deteriorates osteogenic properties. This study fabricated an Azadirachta indica (neem)-assisted brushite-hydroxyapatite (HAp) coating on the recently developed Zn-2Cu-0.5Mg alloy to tackle the above dilemma. The microstructure, degradation behavior, antibacterial activity, and hemocompatibility, along with in vitro and in vivo cytocompatibility of the coated alloys, are systematically investigated. Microstructural analysis reveals flower-like morphology with uniformly grown flakes for neem-assisted deposition. The neem-assisted deposition significantly improves the adhesion strength from 12.7 to 18.8 MPa, enhancing the mechanical integrity. The potentiodynamic polarization study shows that the neem-assisted deposition decreases the degradation rate, with the lowest degradation rate of 0.027 mm/yr for the ZHN2 sample. In addition, the biomineralization process shows the apatite formation on the deposited coating after 21 days of immersion. In vitro cytotoxicity assay exhibits the maximum cell viability of 117% for neem-assisted coated alloy in 30% extract after 5d and the improved cytocompatibility which is due to the controlled release of Zn2+ ions. Meanwhile, neem-assisted coated alloy increases the ZOI by 32 and 24% for Gram-positive and Gram-negative bacteria, respectively. Acceptable hemolysis (<5%) and anticoagulation parameters demonstrate a promising hemocompatibility of the coated alloy. In vivo implantation illustrates a slight inflammatory response and vascularization after 2 weeks of subcutaneous implantation, and neo-bone formation in the defect areas of the rat femur. Micro-CT and histology studies demonstrate better osseointegration with satisfactory biosafety response for the neem-assisted coated alloy as compared to that without neem-assisted deposition. Hence, this neem-assisted brushite-Hap coating strategy elucidates a new perspective on the surface modification of biodegradable implants for the treatment of bone defects.


Subject(s)
Alloys , Calcium Phosphates , Coated Materials, Biocompatible , Zinc , Alloys/chemistry , Alloys/pharmacology , Zinc/chemistry , Zinc/pharmacology , Animals , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Durapatite/chemistry , Durapatite/pharmacology , Materials Testing , Mice , Green Chemistry Technology , Absorbable Implants
3.
Curr Oral Health Rep ; 11(2): 87-94, 2024.
Article in English | MEDLINE | ID: mdl-38706577

ABSTRACT

Purpose of Review: Dental caries or tooth decay is one of the communal problems in the world which can affect not only the oral health but also the general health conditions. The main objective of this systematic review is to explore the efficacy of bioactive glass-based toothpastes against cariogenic bacteria. Recent Findings: Bioactive glass particulates containing toothpaste show better remineralization potential on demineralized enamel and dentin when compared with toothpaste containing various bioactive constituents such as fluoride and potassium chloride. These constituents in conventional toothpaste can rapidly streak off due to acidic impact in the oral environment as the bioactive glass provides minerals for demineralized enamel and dentin by forming a strong hydroxyapatite (HAp) layer on its surface. Further, the therapeutic ions present in the bioglass can resist plaque formation by raising the pH of the surrounding environment or saliva and create amicable media for healthier teeth. Summary: Toothpaste containing bioactive glass particles undoubtedly displayed the remineralizing potentiality of the dental hard tissues. Dynamics of the mineralization through different bioactive glass materials needs further investigations. In order to prevent dental cavities and improve oral health, it is important to identify and study different effective bioglass particles in toothpaste.

4.
Nano Lett ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38620181

ABSTRACT

Advancements in photonic quantum information systems (QIS) have driven the development of high-brightness, on-demand, and indistinguishable semiconductor epitaxial quantum dots (QDs) as single photon sources. Strain-free, monodisperse, and spatially sparse local-droplet-etched (LDE) QDs have recently been demonstrated as a superior alternative to traditional Stranski-Krastanov QDs. However, integration of LDE QDs into nanophotonic architectures with the ability to scale to many interacting QDs is yet to be demonstrated. We present a potential solution by embedding isolated LDE GaAs QDs within an Al0.4Ga0.6As Huygens' metasurface with spectrally overlapping fundamental electric and magnetic dipolar resonances. We demonstrate for the first time a position- and size-independent, 1 order of magnitude increase in the collection efficiency and emission lifetime control for single-photon emission from LDE QDs embedded within the Huygens' metasurfaces. Our results represent a significant step toward leveraging the advantages of LDE QDs within nanophotonic architectures to meet the scalability demands of photonic QIS.

5.
Sci Data ; 11(1): 374, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609389

ABSTRACT

The determination of changes in soil organic carbon (SOC) content under different cropping systems is necessary for policy development oriented towards soil conservation, C sequestration, and future C credit markets. The aim of this study was to generate an open SOC dataset resulting from a systematic literature search related to the agricultural systems for Southeast Asia. The dataset has 209 articles and 4341 observations on soils of cropping systems in this region from articles published between 1987 and 2023. This dataset included different management practices, land uses, soil sampling depth, and length of SOC content assessment. In addition, inherent features of crop production reported in the experiments were included in the dataset. This dataset can be applied to quantify and compare the impact of different land uses or management practices on SOC content, providing foundational knowledge towards identifying sustainable practices. Lastly, it is a useful guide for future regional SOC sequestration policies and the development of C credit markets.

6.
Int J Biometeorol ; 68(6): 1179-1197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38676745

ABSTRACT

Cotton is a major economic crop predominantly cultivated under rainfed situations. The accurate prediction of cotton yield invariably helps farmers, industries, and policy makers. The final cotton yield is mostly determined by the weather patterns that prevail during the crop growing phase. Crop yield prediction with greater accuracy is possible due to the development of innovative technologies which analyses the bigdata with its high-performance computing abilities. Machine learning technologies can make yield prediction reasonable and faster and with greater flexibility than process based complex crop simulation models. The present study demonstrates the usability of ML algorithms for yield forecasting and facilitates the comparison of different models. The cotton yield was simulated by employing the weekly weather indices as inputs and the model performance was assessed by nRMSE, MAPE and EF values. Results show that stacked generalised ensemble model and artificial neural networks predicted the cotton yield with lower nRMSE, MAPE and higher efficiency compared to other models. Variable importance studies in LASSO and ENET model found minimum temperature and relative humidity as the main determinates of cotton yield in all districts. The models were ranked based these performance metrics in the order of Stacked generalised ensemble > ANN > PCA ANN > SMLR ANN > LASSO> ENET > SVM > PCA SMLR > SMLR SVM > SMLR. This study shows that stacked generalised ensembling and ANN method can be used for reliable yield forecasting at district or county level and helps stakeholders in timely decision-making.


Subject(s)
Forecasting , Gossypium , Machine Learning , Neural Networks, Computer , Weather , Gossypium/growth & development , Rain , Regression Analysis , Models, Theoretical
7.
Environ Monit Assess ; 196(5): 473, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662282

ABSTRACT

Aerosol optical depth (AOD) serves as a crucial indicator for assessing regional air quality. To address regional and urban pollution issues, there is a requirement for high-resolution AOD products, as the existing data is of very coarse resolution. To address this issue, we retrieved high-resolution AOD over Kanpur (26.4499°N, 80.3319°E), located in the Indo-Gangetic Plain (IGP) region using Landsat 8 imageries and implemented the algorithm SEMARA, which combines SARA (Simplified Aerosol Retrieval Algorithm) and SREM (Simplified and Robust Surface Reflectance Estimation). Our approach leveraged the green band of the Landsat 8, resulting in an impressive spatial resolution of 30 m of AOD and rigorously validated with available AERONET observations. The retrieved AOD is in good agreement with high correlation coefficients (r) of 0.997, a low root mean squared error of 0.035, and root mean bias of - 4.91%. We evaluated the retrieved AOD with downscaled MODIS (MCD19A2) AOD products across various land classes for cropped and harvested period of agriculture cycle over the study region. It is noticed that over the built-up region of Kanpur, the SEMARA algorithm exhibits a stronger correlation with the MODIS AOD product compared to vegetation, barren areas and water bodies. The SEMARA approach proved to be more effective for AOD retrieval over the barren and built-up land categories for harvested period compared with the cropping period. This study offers a first comparative examination of SEMARA-retrieved high-resolution AOD and MODIS AOD product over a station of IGP.


Subject(s)
Aerosols , Air Pollutants , Cities , Environmental Monitoring , Satellite Imagery , India , Environmental Monitoring/methods , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Algorithms
8.
Plants (Basel) ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38592917

ABSTRACT

Identifying the contributions of climate factors and fertilization to maize yield is significant for the assessment of climate change impacts on maize production under semiarid conditions. This experiment was conducted with an overall objective to find how N fertilization and cultivar interactions along with climatic conditions determine the mineral composition and maize yield responses of four divergent maize cultivars grown under eight different fertilization levels. The results showed that element contents were significantly affected by year (Y), cultivar (C), N fertilization, and N × C interaction. The element contents of grains were mainly influenced by N rate or N × C interactions. The results showed that maize yield was significantly affected by year (Y), genotype (G), N fertilization (N), and Y × G × N interaction. These results implied that the maize yield was significantly affected by changes in genotypes and environments. Overall, our findings are a result of the interactions of genetic, environmental, and agronomic management factors. Future studies could evaluate more extreme plant densities, N fertilizer levels, and environments to further enhance our understanding of management effects on the mineral composition and maize yield in calcareous soil.

9.
Mol Divers ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683486

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease affecting mental ability and neurocognitive functions. Cholinesterase enzymes affect concentration of acetylcholine in the brain, leading to dementia. Thus, there is an urgent need to develop novel dual cholinesterase inhibitors as possible anti-AD drugs. Herein, we have designed and synthesized a novel series of 9H-carbazole-4H-chromenes 4(a-l) through a one-pot three-component reaction of salicylaldehydes (1), hydroxycarbazole (2) and N-methyl-1-(methylthio)-2-nitroethenamine (3) using triethylamine as a catalyst in ethanol. Synthetic transformation involves the formation of two C-C bonds and one C-O bond in a single step to obtain desired analogs. The rapid one-pot reaction does not require chromatographic purification, proceeds under mild conditions, and exhibits good tolerance toward various functional groups with high synthetic yields. Synthesized compounds were screened for cytotoxicity using MTT assay in BV-2 microglial cells. These compounds were then in-vitro screened against acetylcholinesterase (AChE) and butyrylcholinestrase (BuChE) enzymes. Most of these ligands have shown dual cholinesterase inhibitory activity compared to the standard drug. In-vitro results showed that the compounds 4a and 4d have promising anticholinesterase response against both cholinesterase enzymes (4a, AChE IC50: 5.76 µM, BuChE IC50: 48.98 µM; 4d, AChE IC50: 3.58 µM, BuChE IC50: 42.73 µM). In-vitro results were validated by molecular docking and dynamic simulation at 100 ns. Molecular docking and molecular dynamics simulation study strongly supported structural features present in these analogs. Together, these analogs could be exploited to develop dual anti-cholinesterase candidates to treat AD in combination with other drugs.

10.
Int J Biol Macromol ; 268(Pt 2): 131762, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38657925

ABSTRACT

The present investigation describes the development of a novel Chitosan/Polyvinyl Alcohol/Montmorillonite Clay (CS/PVA/MMT) scaffold by adopting an electrospinning method, and their biocompatibility was evaluated in vitro with L929 fibroblast cell line to ascertain its use in wound healing applications. The fabricated scaffold was characterized using analytical techniques. FT-IR measurement exhibited the existence of relevant functional groups and XRD implies scaffolds' amorphous nature. The scaffold's morphology and pore diameter were assessed using TEM and SEM. The pore diameter of the as-prepared scaffold was approximately 125 nm. The antimicrobial assay of the scaffold was evaluated against selected pathogens which demonstrated higher antimicrobial efficacy. The scavenging activity tested using the DPPH assay showed remarkable scavenging capability. The wound healing properties were tested through the Cytotoxicity assay conducted on the L929 assay which proved the scaffold to be a suitable material for cell proliferation. Also, a Molecular docking investigation was carried out for CS/PVA/MMT ligand using human neutrophil elastase (HNE) 1H1B protein as a receptor in the CB-Dock server. Studies conducted in silico revealed strong interaction and high binding energy ratings of CS/PVA/MMT ligand with key residues of human neutrophil elastase (HNE) 1H1B proteins that help in tissue regeneration activity.

11.
Nature ; 628(8006): 195-203, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480879

ABSTRACT

Sustained smouldering, or low-grade activation, of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis1. Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells2. However, how these metabolic features act to perpetuate inflammation of the central nervous system is unclear. Here, using a multiomics approach, we identify a molecular signature that sustains the activation of microglia through mitochondrial complex I activity driving reverse electron transport and the production of reactive oxygen species. Mechanistically, blocking complex I in pro-inflammatory microglia protects the central nervous system against neurotoxic damage and improves functional outcomes in an animal disease model in vivo. Complex I activity in microglia is a potential therapeutic target to foster neuroprotection in chronic inflammatory disorders of the central nervous system3.


Subject(s)
Electron Transport Complex I , Inflammation , Microglia , Neuroinflammatory Diseases , Animals , Female , Humans , Male , Mice , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System/pathology , Disease Models, Animal , Electron Transport/drug effects , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Multiomics , Myeloid Cells/metabolism , Myeloid Cells/pathology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Reactive Oxygen Species/metabolism
12.
J Agric Food Chem ; 72(13): 6931-6941, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38514379

ABSTRACT

Tembotrione is a triketone herbicide widely used for broad-spectrum weed control in corn but not registered for use in wheat. A wide collection of spring, winter, and EMS-derived mutant lines of wheat was evaluated for their response to tembotrione treatment. Two winter wheat (WW) genotypes (WW-1 and WW-2) were found to be least sensitive to this herbicide, surviving >6 times the field recommended dose (92 g ai ha-1) compared to the most sensitive genotype (WW-24). Further, HPLC analysis using [14C] tembotrione suggested that both WW-1 and WW-2 metabolized tembotrione rapidly to nontoxic metabolites. Pretreatment with a P450 inhibitor (malathion) followed by tembotrione application increased the sensitivity of WW-1 and WW-2 genotypes to this herbicide, suggesting likely involvement of P450 enzymes in metabolizing tembotrione similar to corn. Overall, our results suggest that the genotypes WW-1 and WW-2 can potentially be used to develop tembotrione-resistant wheat varieties.


Subject(s)
Herbicides , Herbicides/pharmacology , Herbicides/metabolism , Triticum/genetics , Triticum/metabolism , Cyclohexanones/pharmacology , Sulfones/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Zea mays/metabolism
13.
Saudi Dent J ; 36(1): 168-172, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38375376

ABSTRACT

Background: A refined network and integrated host immune response to bacteria are formed by anti-inflammatory cytokines and the cells that they are associated to IL-35 has been recognized as having strong suppressive activity in chronic inflammatory diseases, together with IL-10 and TGF-ß. It is believed that inflammatory diseases like periodontitis trigger the inducible Treg population to express IL-35, expanding regulatory responses by increasing infection. Aim: The objective is to estimate and compare the salivary IL-35 levels in Periodontally healthy subjects, smokers and non-smokers with Periodontitis in order to educate on the consequences of periodontal health among the diseased patients. Materials and Methods: Totally 42 subjects were included and they were categorized into Group 1 (n = 14) as Periodontally healthy subjects, Group 2 (n = 14) as systemically healthy non-Smokers with periodontitis and Group 3 (n = 14) as systemically healthy smokers with periodontitis. Each subject was assessed for clinical parameters such as Plaque index, Gingival index, Probing depth, clinical attachment. A polypropylene tube was used to collect unstimulated saliva and centrifuged it at 800 × g for 10 min. Supernatants were collected and stored at -80◦C. A commercially available enzyme-linked immunosorbent assay kit was used to analyse levels of human salivary IL-35. Results: The average age of the subjects in Group 1, Group 2 and Group 3 were 50.53, 52.93 and 52.07 years respectively. All three groups showed a statistically significant difference in clinical parameters including Plaque index, Gingival index, Probing depth and clinical attachment. The salivary IL-35 level was found to be elevated in non-smokers who have periodontitis compared to smokers with periodontitis and healthy individuals. Despite this, the salivary IL-35 levels were found to be statistically significant among three groups at P < 0.001. Conclusion: The salivary levels of IL-35 were found to increase in Periodontitis patients with/without smoking, along with increased clinical parameters. IL-35 is considered a influential biomarker for periodontal disease.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123940, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38330755

ABSTRACT

Glasses activated with europium show promising potential for use in applications relating to photonics, in particular solid-state laser generation. In the current work, Eu2O3 incorporated gemanium borate glasses were developed and explored their potentiality towards lasing active medium by probing physical, structural, optical and lasing properties in detail. The physical and structural features of each glass indicated the presence of non-bridging oxygens (NBOs) and an enhancement in network stability on account of the inclusion of europium ions into the GeO2 glass network. Optical energy band gaps, Ed, Eo, no, So, and λo values were obtained by absorption spectra and found to be increased with europium content. The sequence of Judd-Ofelt (JO) intensity parameters (Ω2, Ω4, and Ω6) exhibited the trend Ω2 > Ω4 > Ω6, and it confirmed the covalent nature of the as-developed glasses. 1 mol% Eu2O3 doped glasses exhibited the highest photoluminescence, quantum efficiency and fluorescence intensity ratio (R). The decay profiles showed single exponential nature for 5D0 state of Eu3+ ions and their lifetime values were calculated. The results amply demonstrated the viability of the manufactured glasses as a potential solid-state active laser medium, with the CIE diagram confirming the intense red color emission as seen from the PL spectra.

15.
Plants (Basel) ; 13(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38202451

ABSTRACT

Maize is a globally significant cereal crop, contributing to the production of essential food products and serving as a pivotal resource for diverse industrial applications. This study investigated the proximate analysis of maize hybrids from different FAO maturity groups in Serbia, exploring variations in polyphenols, flavonoids, carotenoids, tocopherols, and fatty acids with the aim of understanding how agroecological conditions influence the nutritional potential of maize hybrids. The results indicate substantial variations in nutritional composition and antioxidant properties among different maturity groups. The levels of total polyphenols varied among FAO groups, indicating that specific hybrids may offer greater health benefits. Flavonoids and carotenoids also showed considerable variation, with implications for nutritional quality. Tocopherol content varied significantly, emphasizing the diversity in antioxidant capacity. Fatty acid analysis revealed high levels of unsaturated fatty acids, particularly linoleic acid, indicating favorable nutritional and industrial properties. The study highlights the importance of considering maturity groups in assessing the nutritional potential of maize hybrids.

16.
Saudi Pharm J ; 32(2): 101953, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38288132

ABSTRACT

Background: Polycystic ovarian syndrome (PCOS) is one of the known causes of anovulatory fertility in the world. Previous research has linked oxidative stress could contribute to PCOS, and vanillic acid has shown antioxidant potential. Hence, the present study evaluated the effect of vanillic acid on letrozole-induced polycystic ovarian syndrome in female rats. Materials and methods: PCOS was induced in Wistar female rats with letrozole (1 mg/kg, orally) in carboxymethoxycellulose (1 % w/v), administered for 21 days. After induction, the standard group received clomiphene citrate (1 mg/kg, orally) while other treatment groups were administered with vanillic acid at doses 25, 50, and 100 mg/kg, orally for 15 days, and without treatment was considered a negative control group. Different parameters studied were body weight, ovary weight, blood glucose, lipid profile, hormonal levels [luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone], markers for oxidative stress (superoxide dismutase, reduced glutathione, catalase, and malonaldehyde), and histopathology of the ovary. Statistical analysis was done for the results and p < 0.05 was considered to indicate the significance. Results: Vanillic acid-treated animals showed a concentration-dependent activity on the tested parameters. The highest tested dose (100 mg/kg) produced a more prominent effect in significantly (P < 0.001) decreasing the body weight, and ovary weight and improving the hormonal imbalance. Also, vanillic acid significantly (P < 0.01) reduced elevated blood sugar and lipid levels. Additionally, vanillic acid reduced oxidative stress significantly (P < 0.001) in the ovaries of female rats. Histopathological reports showed a reduction in cystic follicles and appearance of normal healthy follicles at different stages of development after the administration of vanillic acid. Furthermore, these effects were observed to be comparable with those recorded for standard drug, clomiphene. Conclusion: The current study data suggests that vanillic acid has protected the letrozole-induced polycystic ovarian syndrome. In the event of several side effects associated with conventional treatments used for PCOS, the findings of this study suggest the promising role of vanillic acid. More research in this direction might identify the true potency of vanillic acid in the treatment of PCOS.

17.
Plant Genome ; 17(1): e20427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38239091

ABSTRACT

Buckwheat (Fagopyrum spp.) is an important nutritional and nutraceutical-rich pseudo-cereal crop. Despite its obvious potential as a functional food, buckwheat has not been fully harnessed due to its low yield, self-incompatibility, increased seed cracking, limited seed set, lodging, and frost susceptibility. The inadequate availability of genomics resources in buckwheat is one of the major reasons for this. In the present study, genome-wide association mapping (GWAS) was conducted to identify loci associated with various morphological and yield-related traits in buckwheat. High throughput genotyping by sequencing led to the identification of 34,978 single nucleotide polymorphisms that were distributed across eight chromosomes. Population structure analysis grouped the genotypes into three sub-populations. The genotypes were also characterized for various qualitative and quantitative traits at two diverse locations, the analysis of which revealed a significant difference in the mean values. The association analysis revealed a total of 71 significant marker-trait associations across eight chromosomes. The candidate genes were identified near 100 Kb of quantitative trait loci (QTLs), providing insights into several metabolic and biosynthetic pathways. The integration of phenology and GWAS in the present study is useful to uncover the consistent genomic regions, related markers associated with various yield-related traits, and potential candidate genes having implications for being utilized in molecular breeding for the improvement of economically important traits in buckwheat. Moreover, the identified QTLs will assist in tracking the desirable alleles of target genes within the buckwheat breeding populations/germplasm.


Subject(s)
Fagopyrum , Quantitative Trait Loci , Fagopyrum/genetics , Genotype , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Genetic Linkage , Plant Breeding
18.
Plant Genome ; 17(1): e20378, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37587553

ABSTRACT

Global mean temperature is increasing at a rapid pace due to the rapid emission of greenhouse gases majorly from anthropogenic practices and predicted to rise up to 1.5°C above the pre-industrial level by the year 2050. The warming climate is affecting global crop production by altering biochemical, physiological, and metabolic processes resulting in poor growth, development, and reduced yield. Maize is susceptible to heat stress, particularly at the reproductive and early grain filling stages. Interestingly, heat stress impact on crops is closely regulated by associated environmental covariables such as humidity, vapor pressure deficit, soil moisture content, and solar radiation. Therefore, heat stress tolerance is considered as a complex trait, which requires multiple levels of regulations in plants. Exploring genetic diversity from landraces and wild accessions of maize is a promising approach to identify novel donors, traits, quantitative trait loci (QTLs), and genes, which can be introgressed into the elite cultivars. Indeed, genome wide association studies (GWAS) for mining of potential QTL(s) and dominant gene(s) is a major route of crop improvement. Conversely, mutation breeding is being utilized for generating variation in existing populations with narrow genetic background. Besides breeding approaches, augmented production of heat shock factors (HSFs) and heat shock proteins (HSPs) have been reported in transgenic maize to provide heat stress tolerance. Recent advancements in molecular techniques including clustered regularly interspaced short palindromic repeats (CRISPR) would expedite the process for developing thermotolerant maize genotypes.


Subject(s)
Genome-Wide Association Study , Zea mays , Zea mays/genetics , Plant Breeding , Heat-Shock Response , Quantitative Trait Loci
19.
Environ Sci Pollut Res Int ; 31(1): 1562-1575, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38047999

ABSTRACT

Biochar (BC) and humic acid (HA) are well-documented in metal/metalloid detoxification, but their regulatory role in conferring plant oxidative stress under arsenic (As) stress is poorly understood. Therefore, we aimed at investigating the role of BC and HA (0.2 and 0.4 g kg-1 soil) in the detoxification of As (0.25 mM sodium arsenate) toxicity in rice (Oryza sativa L. cv. BRRI dhan75). Arsenic exhibited an increased lipid peroxidation, hydrogen peroxide, electrolyte leakage, and proline content which were 32, 30, 9, and 89% higher compared to control. In addition, the antioxidant defense system of rice consisting of non-enzyme antioxidants (18 and 43% decrease in ascorbate and glutathione content) and enzyme activities (23-50% reduction over control) was decreased as a result of As toxicity. The damaging effect of As was prominent in plant height, biomass acquisition, tiller number, and relative water content. Furthermore, chlorophyll and leaf area also exhibited a decreasing trend due to toxicity. Arsenic exposure also disrupted the glyoxalase system (23 and 33% decrease in glyoxalase I and glyoxalase II activities). However, the application of BC and HA recovered the reactive oxygen species-induced damages in plants, upregulated the effectiveness of the ascorbate-glutathione pool, and accelerated the activities of antioxidant defense and glyoxalase enzymes. These positive roles of BC and HA ultimately resulted in improved plant characteristics with better plant-water status and regulated proline content that conferred As stress tolerance in rice. So, it can be concluded that BC and HA effectively mitigated As-induced physiology and oxidative damage in rice plants. Therefore, BC and HA could be used as potential soil amendments in As-contaminated rice fields.


Subject(s)
Arsenic , Charcoal , Lactoylglutathione Lyase , Oryza , Antioxidants/metabolism , Oryza/metabolism , Humic Substances , Arsenic/toxicity , Oxidative Stress , Ascorbic Acid/pharmacology , Glutathione/metabolism , Lactoylglutathione Lyase/metabolism , Lactoylglutathione Lyase/pharmacology , Lipid Peroxidation , Proline/metabolism , Water , Seedlings
20.
Sci Rep ; 13(1): 21917, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38081914

ABSTRACT

This genome-wide association studies (GWAS) used a subset of 96 diverse sorghum accessions, constructed from a large collection of 219 accessions for mining novel genetic loci linked to major agronomic, root morphological and physiological traits. The subset yielded 43,452 high quality single nucleotide polymorphic (SNP) markers exhibiting high allelic diversity. Population stratification showed distinct separation between caudatum and durra races. Linkage disequilibrium (LD) decay was rapidly declining with increasing physical distance across all chromosomes. The initial 50% LD decay was ~ 5 Kb and background level was within ~ 80 Kb. This study detected 42 significant quantitative trait nucleotide (QTNs) for different traits evaluated using FarmCPU, SUPER and 3VmrMLM which were in proximity with candidate genes related and were co-localized in already reported quantitative trait loci (QTL) and phenotypic variance (R2) of these QTNs ranged from 3 to 20%. Haplotype validation of the candidate genes from this study resulted nine genes showing significant phenotypic difference between different haplotypes. Three novel candidate genes associated with agronomic traits were validated including Sobic.001G499000, a potassium channel tetramerization domain protein for plant height, Sobic.010G186600, a nucleoporin-related gene for dry biomass, and Sobic.002G022600 encoding AP2-like ethylene-responsive transcription factor for plant yield. Several other candidate genes were validated and associated with different root and physiological traits including Sobic.005G104100, peroxidase 13-related gene with root length, Sobic.010G043300, homologous to Traes_5BL_8D494D60C, encoding inhibitor of apoptosis with iWUE, and Sobic.010G125500, encoding zinc finger, C3HC4 type domain with Abaxial stomatal density. In this study, 3VmrMLM was more powerful than FarmCPU and SUPER for detecting QTNs and having more breeding value indicating its reliable output for validation. This study justified that the constructed subset of diverse sorghums can be used as a panel for mapping other key traits to accelerate molecular breeding in sorghum.


Subject(s)
Genome-Wide Association Study , Sorghum , Genome-Wide Association Study/methods , Sorghum/genetics , Plant Breeding , Quantitative Trait Loci , Phenotype , Edible Grain/genetics , Nucleotides , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...