Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Article in German | MEDLINE | ID: mdl-38753020

ABSTRACT

Healthcare-associated infections (HCAIs) represent an enormous burden for patients, healthcare workers, relatives and society worldwide, including Germany. The central tasks of infection prevention are recording and evaluating infections with the aim of identifying prevention potential and risk factors, taking appropriate measures and finally evaluating them. From an infection prevention perspective, it would be of great value if (i) the recording of infection cases was automated and (ii) if it were possible to identify particularly vulnerable patients and patient groups in advance, who would benefit from specific and/or additional interventions.To achieve this risk-adapted, individualized infection prevention, the RISK PRINCIPE research project develops algorithms and computer-based applications based on standardised, large datasets and incorporates expertise in the field of infection prevention.The project has two objectives: a) to develop and validate a semi-automated surveillance system for hospital-acquired bloodstream infections, prototypically for HCAI, and b) to use comprehensive patient data from different sources to create an individual or group-specific infection risk profile.RISK PRINCIPE is based on bringing together the expertise of medical informatics and infection medicine with a focus on hygiene and draws on information and experience from two consortia (HiGHmed and SMITH) of the German Medical Informatics Initiative (MII), which have been working on use cases in infection medicine for more than five years.

2.
Article in German | MEDLINE | ID: mdl-38753022

ABSTRACT

The interoperability Working Group of the Medical Informatics Initiative (MII) is the platform for the coordination of overarching procedures, data structures, and interfaces between the data integration centers (DIC) of the university hospitals and national and international interoperability committees. The goal is the joint content-related and technical design of a distributed infrastructure for the secondary use of healthcare data that can be used via the Research Data Portal for Health. Important general conditions are data privacy and IT security for the use of health data in biomedical research. To this end, suitable methods are used in dedicated task forces to enable procedural, syntactic, and semantic interoperability for data use projects. The MII core dataset was developed as several modules with corresponding information models and implemented using the HL7® FHIR® standard to enable content-related and technical specifications for the interoperable provision of healthcare data through the DIC. International terminologies and consented metadata are used to describe these data in more detail. The overall architecture, including overarching interfaces, implements the methodological and legal requirements for a distributed data use infrastructure, for example, by providing pseudonymized data or by federated analyses. With these results of the Interoperability Working Group, the MII is presenting a future-oriented solution for the exchange and use of healthcare data, the applicability of which goes beyond the purpose of research and can play an essential role in the digital transformation of the healthcare system.

3.
Digit Health ; 10: 20552076241248922, 2024.
Article in English | MEDLINE | ID: mdl-38766364

ABSTRACT

Background: The ORCHESTRA project, funded by the European Commission, aims to create a pan-European cohort built on existing and new large-scale population cohorts to help rapidly advance the knowledge related to the prevention of the SARS-CoV-2 infection and the management of COVID-19 and its long-term sequelae. The integration and analysis of the very heterogeneous health data pose the challenge of building an innovative technological infrastructure as the foundation of a dedicated framework for data management that should address the regulatory requirements such as the General Data Protection Regulation (GDPR). Methods: The three participating Supercomputing European Centres (CINECA - Italy, CINES - France and HLRS - Germany) designed and deployed a dedicated infrastructure to fulfil the functional requirements for data management to ensure sensitive biomedical data confidentiality/privacy, integrity, and security. Besides the technological issues, many methodological aspects have been considered: Berlin Institute of Health (BIH), Charité provided its expertise both for data protection, information security, and data harmonisation/standardisation. Results: The resulting infrastructure is based on a multi-layer approach that integrates several security measures to ensure data protection. A centralised Data Collection Platform has been established in the Italian National Hub while, for the use cases in which data sharing is not possible due to privacy restrictions, a distributed approach for Federated Analysis has been considered. A Data Portal is available as a centralised point of access for non-sensitive data and results, according to findability, accessibility, interoperability, and reusability (FAIR) data principles. This technological infrastructure has been used to support significative data exchange between population cohorts and to publish important scientific results related to SARS-CoV-2. Conclusions: Considering the increasing demand for data usage in accordance with the requirements of the GDPR regulations, the experience gained in the project and the infrastructure released for the ORCHESTRA project can act as a model to manage future public health threats. Other projects could benefit from the results achieved by ORCHESTRA by building upon the available standardisation of variables, design of the architecture, and process used for GDPR compliance.

4.
JMIR Med Inform ; 12: e49646, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654577

ABSTRACT

Background: The SARS-CoV-2 pandemic has demonstrated once again that rapid collaborative research is essential for the future of biomedicine. Large research networks are needed to collect, share, and reuse data and biosamples to generate collaborative evidence. However, setting up such networks is often complex and time-consuming, as common tools and policies are needed to ensure interoperability and the required flows of data and samples, especially for handling personal data and the associated data protection issues. In biomedical research, pseudonymization detaches directly identifying details from biomedical data and biosamples and connects them using secure identifiers, the so-called pseudonyms. This protects privacy by design but allows the necessary linkage and reidentification. Objective: Although pseudonymization is used in almost every biomedical study, there are currently no pseudonymization tools that can be rapidly deployed across many institutions. Moreover, using centralized services is often not possible, for example, when data are reused and consent for this type of data processing is lacking. We present the ORCHESTRA Pseudonymization Tool (OPT), developed under the umbrella of the ORCHESTRA consortium, which faced exactly these challenges when it came to rapidly establishing a large-scale research network in the context of the rapid pandemic response in Europe. Methods: To overcome challenges caused by the heterogeneity of IT infrastructures across institutions, the OPT was developed based on programmable runtime environments available at practically every institution: office suites. The software is highly configurable and provides many features, from subject and biosample registration to record linkage and the printing of machine-readable codes for labeling biosample tubes. Special care has been taken to ensure that the algorithms implemented are efficient so that the OPT can be used to pseudonymize large data sets, which we demonstrate through a comprehensive evaluation. Results: The OPT is available for Microsoft Office and LibreOffice, so it can be deployed on Windows, Linux, and MacOS. It provides multiuser support and is configurable to meet the needs of different types of research projects. Within the ORCHESTRA research network, the OPT has been successfully deployed at 13 institutions in 11 countries in Europe and beyond. As of June 2023, the software manages data about more than 30,000 subjects and 15,000 biosamples. Over 10,000 labels have been printed. The results of our experimental evaluation show that the OPT offers practical response times for all major functionalities, pseudonymizing 100,000 subjects in 10 seconds using Microsoft Excel and in 54 seconds using LibreOffice. Conclusions: Innovative solutions are needed to make the process of establishing large research networks more efficient. The OPT, which leverages the runtime environment of common office suites, can be used to rapidly deploy pseudonymization and biosample management capabilities across research networks. The tool is highly configurable and available as open-source software.

5.
J Med Internet Res ; 26: e49445, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38657232

ABSTRACT

BACKGROUND: Sharing data from clinical studies can accelerate scientific progress, improve transparency, and increase the potential for innovation and collaboration. However, privacy concerns remain a barrier to data sharing. Certain concerns, such as reidentification risk, can be addressed through the application of anonymization algorithms, whereby data are altered so that it is no longer reasonably related to a person. Yet, such alterations have the potential to influence the data set's statistical properties, such that the privacy-utility trade-off must be considered. This has been studied in theory, but evidence based on real-world individual-level clinical data is rare, and anonymization has not broadly been adopted in clinical practice. OBJECTIVE: The goal of this study is to contribute to a better understanding of anonymization in the real world by comprehensively evaluating the privacy-utility trade-off of differently anonymized data using data and scientific results from the German Chronic Kidney Disease (GCKD) study. METHODS: The GCKD data set extracted for this study consists of 5217 records and 70 variables. A 2-step procedure was followed to determine which variables constituted reidentification risks. To capture a large portion of the risk-utility space, we decided on risk thresholds ranging from 0.02 to 1. The data were then transformed via generalization and suppression, and the anonymization process was varied using a generic and a use case-specific configuration. To assess the utility of the anonymized GCKD data, general-purpose metrics (ie, data granularity and entropy), as well as use case-specific metrics (ie, reproducibility), were applied. Reproducibility was assessed by measuring the overlap of the 95% CI lengths between anonymized and original results. RESULTS: Reproducibility measured by 95% CI overlap was higher than utility obtained from general-purpose metrics. For example, granularity varied between 68.2% and 87.6%, and entropy varied between 25.5% and 46.2%, whereas the average 95% CI overlap was above 90% for all risk thresholds applied. A nonoverlapping 95% CI was detected in 6 estimates across all analyses, but the overwhelming majority of estimates exhibited an overlap over 50%. The use case-specific configuration outperformed the generic one in terms of actual utility (ie, reproducibility) at the same level of privacy. CONCLUSIONS: Our results illustrate the challenges that anonymization faces when aiming to support multiple likely and possibly competing uses, while use case-specific anonymization can provide greater utility. This aspect should be taken into account when evaluating the associated costs of anonymized data and attempting to maintain sufficiently high levels of privacy for anonymized data. TRIAL REGISTRATION: German Clinical Trials Register DRKS00003971; https://drks.de/search/en/trial/DRKS00003971. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1093/ndt/gfr456.


Subject(s)
Data Anonymization , Humans , Renal Insufficiency, Chronic/therapy , Information Dissemination/methods , Algorithms , Germany , Confidentiality , Privacy
6.
Article in German | MEDLINE | ID: mdl-38639817

ABSTRACT

BACKGROUND: The digitalization in the healthcare sector promises a secondary use of patient data in the sense of a learning healthcare system. For this, the Medical Informatics Initiative's (MII) Consent Working Group has created an ethical and legal basis with standardized consent documents. This paper describes the systematically monitored introduction of these documents at the MII sites. METHODS: The monitoring of the introduction included regular online surveys, an in-depth analysis of the introduction processes at selected sites, and an assessment of the documents in use. In addition, inquiries and feedback from a large number of stakeholders were evaluated. RESULTS: The online surveys showed that 27 of the 32 sites have gradually introduced the consent documents productively, with a current total of 173,289 consents. The analysis of the implementation procedures revealed heterogeneous organizational conditions at the sites. The requirements of various stakeholders were met by developing and providing supplementary versions of the consent documents and additional information materials. DISCUSSION: The introduction of the MII consent documents at the university hospitals creates a uniform legal basis for the secondary use of patient data. However, the comprehensive implementation within the sites remains challenging. Therefore, minimum requirements for patient information and supplementary recommendations for best practice must be developed. The further development of the national legal framework for research will not render the participation and transparency mechanisms developed here obsolete.

7.
JMIR Med Inform ; 12: e53075, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632712

ABSTRACT

Background: Pseudonymization has become a best practice to securely manage the identities of patients and study participants in medical research projects and data sharing initiatives. This method offers the advantage of not requiring the direct identification of data to support various research processes while still allowing for advanced processing activities, such as data linkage. Often, pseudonymization and related functionalities are bundled in specific technical and organization units known as trusted third parties (TTPs). However, pseudonymization can significantly increase the complexity of data management and research workflows, necessitating adequate tool support. Common tasks of TTPs include supporting the secure registration and pseudonymization of patient and sample identities as well as managing consent. Objective: Despite the challenges involved, little has been published about successful architectures and functional tools for implementing TTPs in large university hospitals. The aim of this paper is to fill this research gap by describing the software architecture and tool set developed and deployed as part of a TTP established at Charité - Universitätsmedizin Berlin. Methods: The infrastructure for the TTP was designed to provide a modular structure while keeping maintenance requirements low. Basic functionalities were realized with the free MOSAIC tools. However, supporting common study processes requires implementing workflows that span different basic services, such as patient registration, followed by pseudonym generation and concluded by consent collection. To achieve this, an integration layer was developed to provide a unified Representational state transfer (REST) application programming interface (API) as a basis for more complex workflows. Based on this API, a unified graphical user interface was also implemented, providing an integrated view of information objects and workflows supported by the TTP. The API was implemented using Java and Spring Boot, while the graphical user interface was implemented in PHP and Laravel. Both services use a shared Keycloak instance as a unified management system for roles and rights. Results: By the end of 2022, the TTP has already supported more than 10 research projects since its launch in December 2019. Within these projects, more than 3000 identities were stored, more than 30,000 pseudonyms were generated, and more than 1500 consent forms were submitted. In total, more than 150 people regularly work with the software platform. By implementing the integration layer and the unified user interface, together with comprehensive roles and rights management, the effort for operating the TTP could be significantly reduced, as personnel of the supported research projects can use many functionalities independently. Conclusions: With the architecture and components described, we created a user-friendly and compliant environment for supporting research projects. We believe that the insights into the design and implementation of our TTP can help other institutions to efficiently and effectively set up corresponding structures.

8.
Article in German | MEDLINE | ID: mdl-38684526

ABSTRACT

Healthcare data are an important resource in applied medical research. They are available multicentrically. However, it remains a challenge to enable standardized data exchange processes between federal states and their individual laws and regulations. The Medical Informatics Initiative (MII) was founded in 2016 to implement processes that enable cross-clinic access to healthcare data in Germany. Several working groups (WGs) have been set up to coordinate standardized data structures (WG Interoperability), patient information and declarations of consent (WG Consent), and regulations on data exchange (WG Data Sharing). Here we present the most important results of the Data Sharing working group, which include agreed terms of use, legal regulations, and data access processes. They are already being implemented by the established Data Integration Centers (DIZ) and Use and Access Committees (UACs). We describe the services that are necessary to provide researchers with standardized data access. They are implemented with the Research Data Portal for Health, among others. Since the pilot phase, the processes of 385 active researchers have been used on this basis, which, as of April 2024, has resulted in 19 registered projects and 31 submitted research applications.

9.
Article in German | MEDLINE | ID: mdl-38175194

ABSTRACT

The increasing digitization of the healthcare system is leading to a growing volume of health data. Leveraging this data beyond its initial collection purpose for secondary use can provide valuable insights into diagnostics, treatment processes, and the quality of care. The Health Data Lab (HDL) will provide infrastructure for this purpose. Both the protection of patient privacy and optimal analytical capabilities are of central importance in this context, and artificial intelligence (AI) provides two opportunities. First, it enables the analysis of large volumes of data with flexible models, which means that hidden correlations and patterns can be discovered. Second, synthetic - that is, artificial - data generated by AI can protect privacy.This paper describes the KI-FDZ project, which aims to investigate innovative technologies that can support the secure provision of health data for secondary research purposes. A multi-layered approach is investigated in which data-level measures can be combined in different ways with processing in secure environments. To this end, anonymization and synthetization methods, among others, are evaluated based on two concrete application examples. Moreover, it is examined how the creation of machine learning pipelines and the execution of AI algorithms can be supported in secure processing environments. Preliminary results indicate that this approach can achieve a high level of protection while maintaining data validity. The approach investigated in the project can be an important building block in the secure secondary use of health data.


Subject(s)
Algorithms , Artificial Intelligence , Humans , Germany , Delivery of Health Care
10.
JMIR Res Protoc ; 12: e46471, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37566443

ABSTRACT

BACKGROUND: The anonymization of Common Data Model (CDM)-converted EHR data is essential to ensure the data privacy in the use of harmonized health care data. However, applying data anonymization techniques can significantly affect many properties of the resulting data sets and thus biases research results. Few studies have reviewed these applications with a reflection of approaches to manage data utility and quality concerns in the context of CDM-formatted health care data. OBJECTIVE: Our intended scoping review aims to identify and describe (1) how formal anonymization methods are carried out with CDM-converted health care data, (2) how data quality and utility concerns are considered, and (3) how the various CDMs differ in terms of their suitability for recording anonymized data. METHODS: The planned scoping review is based on the framework of Arksey and O'Malley. By using this, only articles published in English will be included. The retrieval of literature items should be based on a literature search string combining keywords related to data anonymization, CDM standards, and data quality assessment. The proposed literature search query should be validated by a librarian, accompanied by manual searches to include further informal sources. Eligible articles will first undergo a deduplication step, followed by the screening of titles. Second, a full-text reading will allow the 2 reviewers involved to reach the final decision about article selection, while a domain expert will support the resolution of citation selection conflicts. Additionally, key information will be extracted, categorized, summarized, and analyzed by using a proposed template into an iterative process. Tabular and graphical analyses should be addressed in alignment with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) checklist. We also performed some tentative searches on Web of Science for estimating the feasibility of reaching eligible articles. RESULTS: Tentative searches on Web of Science resulted in 507 nonduplicated matches, suggesting the availability of (potential) relevant articles. Further analysis and selection steps will allow us to derive a final literature set. Furthermore, the completion of this scoping review study is expected by the end of the fourth quarter of 2023. CONCLUSIONS: Outlining the approaches of applying formal anonymization methods on CDM-formatted health care data while taking into account data quality and utility concerns should provide useful insights to understand the existing approaches and future research direction based on identified gaps. This protocol describes a schedule to perform a scoping review, which should support the conduction of follow-up investigations. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/46471.

11.
Stud Health Technol Inform ; 302: 691-695, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37203471

ABSTRACT

Making health data available for secondary use enables innovative data-driven medical research. Since modern machine learning (ML) methods and precision medicine require extensive amounts of data covering most of the standard and edge cases, it is essential to initially acquire large datasets. This can typically only be achieved by integrating different datasets from various sources and sharing data across sites. To obtain a unified dataset from heterogeneous sources, standard representations and Common Data Models (CDM) are needed. The process of mapping data into these standardized representations is usually very tedious and requires many manual configuration and refinement steps. A potential way to reduce these efforts is to use ML methods not only for data analysis, but also for the integration of health data on the syntactic, structural, and semantic level. However, research on ML-based medical data integration is still in its infancy. In this article, we describe the current state of the literature and present selected methods that appear to have a particularly high potential to improve medical data integration. Moreover, we discuss open issues and possible future research directions.


Subject(s)
Biomedical Research , Machine Learning , Semantics
12.
Stud Health Technol Inform ; 302: 28-32, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37203603

ABSTRACT

Data sharing provides benefits in terms of transparency and innovation. Privacy concerns in this context can be addressed by anonymization techniques. In our study, we evaluated anonymization approaches which transform structured data in a real-world scenario of a chronic kidney disease cohort study and checked for replicability of research results via 95% CI overlap in two differently anonymized datasets with different protection degrees. Calculated 95% CI overlapped in both applied anonymization approaches and visual comparison presented similar results. Thus, in our use case scenario, research results were not relevantly impacted by anonymization, which adds to the growing evidence of utility-preserving anonymization techniques.


Subject(s)
Data Anonymization , Privacy , Humans , Cohort Studies , Information Dissemination , Organizations
13.
Nat Commun ; 14(1): 2577, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37142591

ABSTRACT

Access to large volumes of so-called whole-slide images-high-resolution scans of complete pathological slides-has become a cornerstone of the development of novel artificial intelligence methods in pathology for diagnostic use, education/training of pathologists, and research. Nevertheless, a methodology based on risk analysis for evaluating the privacy risks associated with sharing such imaging data and applying the principle "as open as possible and as closed as necessary" is still lacking. In this article, we develop a model for privacy risk analysis for whole-slide images which focuses primarily on identity disclosure attacks, as these are the most important from a regulatory perspective. We introduce a taxonomy of whole-slide images with respect to privacy risks and mathematical model for risk assessment and design . Based on this risk assessment model and the taxonomy, we conduct a series of experiments to demonstrate the risks using real-world imaging data. Finally, we develop guidelines for risk assessment and recommendations for low-risk sharing of whole-slide image data.


Subject(s)
Artificial Intelligence , Privacy , Image Processing, Computer-Assisted/methods , Diagnostic Imaging/methods
14.
J Med Internet Res ; 25: e42289, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36972116

ABSTRACT

BACKGROUND: Data provenance refers to the origin, processing, and movement of data. Reliable and precise knowledge about data provenance has great potential to improve reproducibility as well as quality in biomedical research and, therefore, to foster good scientific practice. However, despite the increasing interest on data provenance technologies in the literature and their implementation in other disciplines, these technologies have not yet been widely adopted in biomedical research. OBJECTIVE: The aim of this scoping review was to provide a structured overview of the body of knowledge on provenance methods in biomedical research by systematizing articles covering data provenance technologies developed for or used in this application area; describing and comparing the functionalities as well as the design of the provenance technologies used; and identifying gaps in the literature, which could provide opportunities for future research on technologies that could receive more widespread adoption. METHODS: Following a methodological framework for scoping studies and the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines, articles were identified by searching the PubMed, IEEE Xplore, and Web of Science databases and subsequently screened for eligibility. We included original articles covering software-based provenance management for scientific research published between 2010 and 2021. A set of data items was defined along the following five axes: publication metadata, application scope, provenance aspects covered, data representation, and functionalities. The data items were extracted from the articles, stored in a charting spreadsheet, and summarized in tables and figures. RESULTS: We identified 44 original articles published between 2010 and 2021. We found that the solutions described were heterogeneous along all axes. We also identified relationships among motivations for the use of provenance information, feature sets (capture, storage, retrieval, visualization, and analysis), and implementation details such as the data models and technologies used. The important gap that we identified is that only a few publications address the analysis of provenance data or use established provenance standards, such as PROV. CONCLUSIONS: The heterogeneity of provenance methods, models, and implementations found in the literature points to the lack of a unified understanding of provenance concepts for biomedical data. Providing a common framework, a biomedical reference, and benchmarking data sets could foster the development of more comprehensive provenance solutions.


Subject(s)
Biomedical Research , Humans , Metadata , PubMed , Reproducibility of Results , Software
15.
Acta Physiol (Oxf) ; 237(4): e13951, 2023 04.
Article in English | MEDLINE | ID: mdl-36790321

ABSTRACT

Data integration, data sharing, and standardized analyses are important enablers for data-driven medical research. Circadian medicine is an emerging field with a particularly high need for coordinated and systematic collaboration between researchers from different disciplines. Datasets in circadian medicine are multimodal, ranging from molecular circadian profiles and clinical parameters to physiological measurements and data obtained from (wearable) sensors or reported by patients. Uniquely, data spanning both the time dimension and the spatial dimension (across tissues) are needed to obtain a holistic view of the circadian system. The study of human rhythms in the context of circadian medicine has to confront the heterogeneity of clock properties within and across subjects and our inability to repeatedly obtain relevant biosamples from one subject. This requires informatics solutions for integrating and visualizing relevant data types at various temporal resolutions ranging from milliseconds and seconds to minutes and several hours. Associated challenges range from a lack of standards that can be used to represent all required data in a common interoperable form, to challenges related to data storage, to the need to perform transformations for integrated visualizations, and to privacy issues. The downstream analysis of circadian rhythms requires specialized approaches for the identification, characterization, and discrimination of rhythms. We conclude that circadian medicine research provides an ideal environment for developing innovative methods to address challenges related to the collection, integration, visualization, and analysis of multimodal multidimensional biomedical data.


Subject(s)
Biomedical Research , Circadian Rhythm , Humans , Circadian Rhythm/physiology , Information Dissemination
17.
J Biomed Inform ; 137: 104257, 2023 01.
Article in English | MEDLINE | ID: mdl-36462598

ABSTRACT

Effective and efficient privacy risk management (PRM) is a necessary condition to support digitalization in health care and secondary use of patient data in research. To reduce privacy risks, current PRM frameworks are rooted in an approach trying to reduce undesired technical/organizational outcomes such as broken encryption or unintentional data disclosure. Comparing this with risk management in preventive or therapeutic medicine, a key difference becomes apparent: in health-related risk management, medicine focuses on person-specific health outcomes, whereas PRM mostly targets more indirect, technical/organizational outcomes. In this paper, we illustrate and discuss how a PRM approach based on evidence of person-specific privacy outcomes might look using three consecutive steps: i) a specification of undesired person-specific privacy outcomes, ii) empirical assessments of their frequency and severity, and iii) empirical studies on how effectively the available PRM interventions reduce their frequency or severity. After an introduction of these three steps, we cover their status quo and outline open questions and PRM-specific challenges in need of further conceptual clarification and feasibility studies. Specific challenges of an outcome-oriented approach to PRM include the potential delays between concrete threats manifesting and the resulting person/group-specific privacy outcomes. Moreover, new ways of exploiting privacy-sensitive information to harm individuals could be developed in the future. The challenges described are of technical, legal, ethical, financial and resource-oriented nature. In health research, however, there is explicit discussion about how to overcome such challenges to make important outcome-based assessments as feasible as possible. This paper concludes that it might be the time to have this discussion in the PRM field as well.


Subject(s)
Confidentiality , Privacy , Humans
18.
Infection ; 51(1): 71-81, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35486356

ABSTRACT

PURPOSE: Patients suffering from chronic kidney disease (CKD) are in general at high risk for severe coronavirus disease (COVID-19) but dialysis-dependency (CKD5D) is poorly understood. We aimed to describe CKD5D patients in the different intervals of the pandemic and to evaluate pre-existing dialysis dependency as a potential risk factor for mortality. METHODS: In this multicentre cohort study, data from German study sites of the Lean European Open Survey on SARS-CoV-2-infected patients (LEOSS) were used. We multiply imputed missing data, performed subsequent analyses in each of the imputed data sets and pooled the results. Cases (CKD5D) and controls (CKD not requiring dialysis) were matched 1:1 by propensity-scoring. Effects on fatal outcome were calculated by multivariable logistic regression. RESULTS: The cohort consisted of 207 patients suffering from CKD5D and 964 potential controls. Multivariable regression of the whole cohort identified age (> 85 years adjusted odds ratio (aOR) 7.34, 95% CI 2.45-21.99), chronic heart failure (aOR 1.67, 95% CI 1.25-2.23), coronary artery disease (aOR 1.41, 95% CI 1.05-1.89) and active oncological disease (aOR 1.73, 95% CI 1.07-2.80) as risk factors for fatal outcome. Dialysis-dependency was not associated with a fatal outcome-neither in this analysis (aOR 1.08, 95% CI 0.75-1.54) nor in the conditional multivariable regression after matching (aOR 1.34, 95% CI 0.70-2.59). CONCLUSIONS: In the present multicentre German cohort, dialysis dependency is not linked to fatal outcome in SARS-CoV-2-infected CKD patients. However, the mortality rate of 26% demonstrates that CKD patients are an extreme vulnerable population, irrespective of pre-existing dialysis-dependency.


Subject(s)
COVID-19 , Renal Insufficiency, Chronic , Humans , Aged, 80 and over , COVID-19/epidemiology , SARS-CoV-2 , Cohort Studies , Renal Dialysis , Pandemics , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/therapy , Disease Progression
19.
Sci Data ; 9(1): 776, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543828

ABSTRACT

Anonymization has the potential to foster the sharing of medical data. State-of-the-art methods use mathematical models to modify data to reduce privacy risks. However, the degree of protection must be balanced against the impact on statistical properties. We studied an extreme case of this trade-off: the statistical validity of an open medical dataset based on the German National Pandemic Cohort Network (NAPKON), which was prepared for publication using a strong anonymization procedure. Descriptive statistics and results of regression analyses were compared before and after anonymization of multiple variants of the original dataset. Despite significant differences in value distributions, the statistical bias was found to be small in all cases. In the regression analyses, the median absolute deviations of the estimated adjusted odds ratios for different sample sizes ranged from 0.01 [minimum = 0, maximum = 0.58] to 0.52 [minimum = 0.25, maximum = 0.91]. Disproportionate impact on the statistical properties of data is a common argument against the use of anonymization. Our analysis demonstrates that anonymization can actually preserve validity of statistical results in relatively low-dimensional data.


Subject(s)
COVID-19 , Humans , Bias , Data Anonymization , Models, Theoretical , Privacy , Data Interpretation, Statistical , Datasets as Topic
20.
BMC Bioinformatics ; 23(1): 531, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494612

ABSTRACT

BACKGROUND: Modern biomedical research is data-driven and relies heavily on the re-use and sharing of data. Biomedical data, however, is subject to strict data protection requirements. Due to the complexity of the data required and the scale of data use, obtaining informed consent is often infeasible. Other methods, such as anonymization or federation, in turn have their own limitations. Secure multi-party computation (SMPC) is a cryptographic technology for distributed calculations, which brings formally provable security and privacy guarantees and can be used to implement a wide-range of analytical approaches. As a relatively new technology, SMPC is still rarely used in real-world biomedical data sharing activities due to several barriers, including its technical complexity and lack of usability. RESULTS: To overcome these barriers, we have developed the tool EasySMPC, which is implemented in Java as a cross-platform, stand-alone desktop application provided as open-source software. The tool makes use of the SMPC method Arithmetic Secret Sharing, which allows to securely sum up pre-defined sets of variables among different parties in two rounds of communication (input sharing and output reconstruction) and integrates this method into a graphical user interface. No additional software services need to be set up or configured, as EasySMPC uses the most widespread digital communication channel available: e-mails. No cryptographic keys need to be exchanged between the parties and e-mails are exchanged automatically by the software. To demonstrate the practicability of our solution, we evaluated its performance in a wide range of data sharing scenarios. The results of our evaluation show that our approach is scalable (summing up 10,000 variables between 20 parties takes less than 300 s) and that the number of participants is the essential factor. CONCLUSIONS: We have developed an easy-to-use "no-code solution" for performing secure joint calculations on biomedical data using SMPC protocols, which is suitable for use by scientists without IT expertise and which has no special infrastructure requirements. We believe that innovative approaches to data sharing with SMPC are needed to foster the translation of complex protocols into practice.


Subject(s)
Biomedical Research , Computer Security , Humans , Information Dissemination , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...