Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Sci Rep ; 14(1): 11788, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783016

ABSTRACT

Fascaplysin is a red cytotoxic pigment with anticancer properties isolated from the marine sponge Fascaplysinopsis sp. Recently, structure-activity relationship analysis reported by our group suggested that selective cytotoxicity of fascaplysin derivatives towards tumor cells negatively correlates with their ability to intercalate into DNA. To validate this hypothesis, we synthesized 6- and 7-tert-butylfascaplysins which reveal mitigated DNA-intercalating properties. These derivatives were found to be strongly cytotoxic to drug-resistant human prostate cancer cells, albeit did not demonstrate improved selectivity towards cancer cells when compared to fascaplysin. At the same time, kinome analysis suggested an activation of CHK1/ATR axis in cancer cells shortly after the drug exposure. Further experiments revealed induction of replication stress that is eventually converted to the toxic DNA double-strand breaks, resulting in caspase-independent apoptosis-like cell death. Our observations highlight new DNA-targeting effect of some fascaplysin derivatives and indicate more complex structure-activity relationships within the fascaplysin family, suggesting that cytotoxicity and selectivity of these alkaloids are influenced by multiple factors. Furthermore, combination with clinically-approved inhibitors of ATR/CHK1 as well as testing in tumors particularly sensitive to the DNA damage should be considered in further studies.


Subject(s)
Antineoplastic Agents , Checkpoint Kinase 1 , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Indoles/pharmacology , Indoles/chemistry , Apoptosis/drug effects , Structure-Activity Relationship , Male , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , DNA/metabolism , Animals , DNA Breaks, Double-Stranded/drug effects , Quaternary Ammonium Compounds , Carbolines , Indolizines
2.
Cell Death Discov ; 10(1): 181, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637526

ABSTRACT

Imaging-based anticancer drug screens are becoming more prevalent due to development of automated fluorescent microscopes and imaging stations, as well as rapid advancements in image processing software. Automated cell imaging provides many benefits such as their ability to provide high-content data, modularity, dynamics recording and the fact that imaging is the most direct way to access cell viability and cell proliferation. However, currently most publicly available large-scale anticancer drugs screens, such as GDSC, CTRP and NCI-60, provide cell viability data measured by assays based on colorimetric or luminometric measurements of NADH or ATP levels. Although such datasets provide valuable data, it is unclear how well drug toxicity measurements can be integrated with imaging data. Here we explored the relations between drug toxicity data obtained by XTT assay, two quantitative nuclei imaging methods and trypan blue dye exclusion assay using a set of four cancer cell lines with different morphologies and 30 drugs with different mechanisms of action. We show that imaging-based approaches provide high accuracy and the differences between results obtained by different methods highly depend on drug mechanism of action. Selecting AUC metrics over IC50 or comparing data where significantly drugs reduced cell numbers noticeably improves consistency between methods. Using automated cell segmentation protocols we analyzed mitochondria activity in more than 11 thousand drug-treated cells and showed that XTT assay produces unreliable data for CDK4/6, Aurora A, VEGFR and PARP inhibitors due induced cell size growth and increase in individual mitochondria activity. We also explored several benefits of image-based analysis such as ability to monitor cell number dynamics, dissect changes in total and individual mitochondria activity from cell proliferation, and ability to identify chromatin remodeling drugs. Finally, we provide a web tool that allows comparing results obtained by different methods.

3.
Biochemistry (Mosc) ; 88(11): 1786-1799, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38105199

ABSTRACT

In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.


Subject(s)
Protein Biosynthesis , Stress Granules , RNA, Messenger/metabolism , Cytoplasmic Granules , Ribosomes/metabolism , Protein Synthesis Inhibitors/pharmacology , RNA-Binding Proteins/metabolism
4.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958484

ABSTRACT

The long-read RNA sequencing developed by Oxford Nanopore Technology provides a direct quantification of transcript isoforms. That makes the number of transcript isoforms per gene an intrinsically suitable metric for alternative splicing (AS) profiling in the application to this particular type of RNA sequencing. By using this simple metric and recruiting principal component analysis (PCA) as a tool to visualize the high-dimensional transcriptomic data, we were able to group biospecimens of normal human liver tissue and hepatocyte-derived malignant HepG2 and Huh7 cells into clear clusters in a 2D space. For the transcriptome-wide analysis, the clustering was observed regardless whether all genes were included in analysis or only those expressed in all biospecimens tested. However, in the application to a particular set of genes known as pharmacogenes, which are involved in drug metabolism, the clustering worsened dramatically in the latter case. Based on PCA data, the subsets of genes most contributing to biospecimens' grouping into clusters were selected and subjected to gene ontology analysis that allowed us to determine the top 20 biological processes among which translation and processes related to its regulation dominate. The suggested metrics can be a useful addition to the existing metrics for describing AS profiles, especially in application to transcriptome studies with long-read sequencing.


Subject(s)
Alternative Splicing , High-Throughput Nucleotide Sequencing , Humans , Principal Component Analysis , High-Throughput Nucleotide Sequencing/methods , Gene Expression Profiling/methods , Transcriptome , Sequence Analysis, RNA/methods , Liver , Protein Isoforms/genetics , Hepatocytes , Cell Line
5.
Mar Drugs ; 21(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37623705

ABSTRACT

Fascaplysin is a marine alkaloid which is considered to be a lead drug candidate due to its diverse and potent biological activity. As an anticancer agent, fascaplysin holds a great potential due to the multiple targets affected by this alkaloid in cancer cells, including inhibition of cyclin-dependent kinase 4 (CDK4) and induction of intrinsic apoptosis. At the same time, the studies on structural optimization are hampered by its rather high toxicity, mainly caused by DNA intercalation. In addition, the number of methods for the syntheses of its derivatives is limited. In the current study, we report a new two-step method of synthesis of fascaplysin derivatives based on low temperature UV quaternization for the synthesis of thermolabile 9-benzyloxyfascaplysin and 6-tert-butylfascaplysin. 9-Benzyloxyfascaplysin was used as the starting compound to obtain 9-hydroxyfascaplysin. However, the latter was found to be chemically highly unstable. 6-tert-Butylfascaplysin revealed a significant decrease in DNA intercalation when compared to fascaplysin, while cytotoxicity was only slightly reduced. Therefore, the impact of DNA intercalation for the cytotoxic effects of fascaplysin and its derivatives needs to be questioned.


Subject(s)
Alkaloids , Antineoplastic Agents , Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Carbolines , DNA
6.
Cells ; 12(2)2023 01 08.
Article in English | MEDLINE | ID: mdl-36672194

ABSTRACT

Upon oxidative stress, mammalian cells rapidly reprogram their translation. This is accompanied by the formation of stress granules (SGs), cytoplasmic ribonucleoprotein condensates containing untranslated mRNA molecules, RNA-binding proteins, 40S ribosomal subunits, and a set of translation initiation factors. Here we show that arsenite-induced stress causes a dramatic increase in the stop-codon readthrough rate and significantly elevates translation reinitiation levels on uORF-containing and bicistronic mRNAs. We also report the recruitment of translation termination factors eRF1 and eRF3, as well as ribosome recycling and translation reinitiation factors ABCE1, eIF2D, MCT-1, and DENR to SGs upon arsenite treatment. Localization of these factors to SGs may contribute to a rapid resumption of mRNA translation after stress relief and SG disassembly. It may also suggest the presence of post-termination, recycling, or reinitiation complexes in SGs. This new layer of translational control under stress conditions, relying on the altered spatial distribution of translation factors between cellular compartments, is discussed.


Subject(s)
Arsenites , Animals , Codon, Terminator , Arsenites/pharmacology , Arsenites/metabolism , Ribosomes/metabolism , Stress Granules , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Oxidative Stress , Mammals/metabolism
7.
DNA Repair (Amst) ; 123: 103448, 2023 03.
Article in English | MEDLINE | ID: mdl-36657260

ABSTRACT

DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Apoptosis , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , DNA Damage , DNA Repair , G2 Phase Cell Cycle Checkpoints/genetics , Neoplasms/genetics , Proteomics , Tumor Suppressor Protein p53/metabolism
8.
J Biol Chem ; 298(8): 102226, 2022 08.
Article in English | MEDLINE | ID: mdl-35787369

ABSTRACT

Increased MAPK signaling is a hallmark of various cancers and is a central regulator of cell survival. Direct ERK1/2 inhibition is considered a promising approach to avoid ERK1/2 reactivation caused by upstream kinases BRAF, MEK1/2, and KRAS, as well as by receptor tyrosine kinase inhibitors, but the dynamics and selectivity of ERK1/2 inhibitors are much less studied compared with BRAF or MEK inhibitors. Using ERK1/2 and downstream kinase ELK1 reporter cell lines of lung cancer (H1299; NRASQ61K), colon cancer (HCT-116; KRASG13D), neuroblastoma (SH-SY5Y), and leukemia (U937), we examined the relationship between ERK inhibition and drug-induced toxicity for five ERK inhibitors: SCH772984, ravoxertinib, LY3214996, ulixertinib, and VX-11e, as well as one MEK inhibitor, PD0325901. Comparing cell viability and ERK inhibition revealed different ERK dependencies for these cell lines. We identify several drugs, such as SCH772984 and VX-11e, which induce excessive toxicity not directly related to ERK1/2 inhibition in specific cell lines. We also show that PD0325901, LY3214996, and ulixertinib are prone to ERK1/2 reactivation over time. We distinguished two types of ERK1/2 reactivation: the first could be reversed by adding a fresh dose of inhibitors, while the second persists even after additional treatments. We also showed that cells that became resistant to the MEK1/2 inhibitor PD0325901 due to ERK1/2 reactivation remained sensitive to ERK1/2 inhibitor ulixertinib. Our data indicate that correlation of ERK inhibition with drug-induced toxicity in multiple cell lines may help to find more selective and effective ERK1/2 inhibitors.


Subject(s)
Antineoplastic Agents , Mitogen-Activated Protein Kinase Kinases , Neuroblastoma , Protein Kinase Inhibitors , Aminopyridines , Antineoplastic Agents/pharmacology , Benzamides , Cell Line, Tumor , Cell Survival , Diphenylamine/analogs & derivatives , Humans , Indazoles , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Neuroblastoma/drug therapy , Piperazines , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Pyrazoles , Pyridones , Pyrimidines , Pyrroles
9.
Mar Drugs ; 20(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35323484

ABSTRACT

Marine alkaloid fascaplysin and its derivatives are known to exhibit promising anticancer properties in vitro and in vivo. However, toxicity of these molecules to non-cancer cells was identified as a main limitation for their clinical use. Here, for the very first time, we synthesized a library of fascaplysin derivatives covering all possible substituent introduction sites, i.e., cycles A, C and E of the 12H-pyrido[1-2-a:3,4-b']diindole system. Their selectivity towards human prostate cancer versus non-cancer cells, as well as the effects on cellular metabolism, membrane integrity, cell cycle progression, apoptosis induction and their ability to intercalate into DNA were investigated. A pronounced selectivity for cancer cells was observed for the family of di- and trisubstituted halogen derivatives (modification of cycles A and E), while a modification of cycle C resulted in a stronger activity in therapy-resistant PC-3 cells. Among others, 3,10-dibromofascaplysin exhibited the highest selectivity, presumably due to the cytostatic effects executed via the targeting of cellular metabolism. Moreover, an introduction of radical substituents at C-9, C-10 or C-10 plus C-3 resulted in a notable reduction in DNA intercalating activity and improved selectivity. Taken together, our research contributes to understanding the structure-activity relationships of fascaplysin alkaloids and defines further directions of the structural optimization.


Subject(s)
Antineoplastic Agents , Indoles , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line , DNA/metabolism , Humans , Indoles/chemistry , Indoles/pharmacology , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , Structure-Activity Relationship
11.
Sci Rep ; 11(1): 11234, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045585

ABSTRACT

Understanding the molecular basis of fibrosis, the lethal complication of COVID-19, is urgent. By the analysis of RNA-sequencing data of SARS-CoV-2-infected cells combined with data mining we identified genes involved in COVID-19 progression. To characterize their implication in the fibrosis development we established a correlation matrix based on the transcriptomic data of patients with idiopathic pulmonary fibrosis. With this method, we have identified a cluster of genes responsible for SARS-CoV-2-fibrosis including its entry receptor ACE2 and epidermal growth factor EGF. Then, we developed Vi-Fi scoring-a novel drug repurposing approach and simultaneously quantified antiviral and antifibrotic activities of the drugs based on their transcriptomic signatures. We revealed the strong dual antifibrotic and antiviral activity of EGFR/ErbB inhibitors. Before the in vitro validation, we have clustered 277 cell lines and revealed distinct COVID-19 transcriptomic signatures of the cells with similar phenotypes that defines their suitability for COVID-19 research. By ERK activity monitoring in living lung cells, we show that the drugs with predicted antifibrotic activity downregulate ERK in the host lung cells. Overall, our study provides novel insights on SARS-CoV-2 dependence on EGFR/ERK signaling and demonstrates the utility of EGFR/ErbB inhibitors for COVID-19 treatment.


Subject(s)
COVID-19/metabolism , Cytokines/metabolism , Fibrosis/metabolism , MAP Kinase Signaling System/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/complications , COVID-19/genetics , COVID-19/physiopathology , Cell Line, Tumor , Cytokines/genetics , Disease Progression , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Fibrosis/complications , Fibrosis/genetics , Fibrosis/virology , Gene Expression Profiling , Humans , Inflammation/genetics , Inflammation/metabolism , Multigene Family , RNA-Seq , COVID-19 Drug Treatment
12.
Mar Drugs ; 18(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271756

ABSTRACT

Efficacy and mechanism of action of marine alkaloid 3,10-dibromofascaplysin (DBF) were investigated in human prostate cancer (PCa) cells harboring different levels of drug resistance. Anticancer activity was observed across all cell lines examined without signs of cross-resistance to androgen receptor targeting agents (ARTA) or taxane based chemotherapy. Kinome analysis followed by functional investigation identified JNK1/2 to be one of the molecular targets of DBF in 22Rv1 cells. In contrast, no activation of p38 and ERK1/2 MAPKs was observed. Inhibition of the drug-induced JNK1/2 activation or of the basal p38 activity resulted in increased cytotoxicity of DBF, whereas an active ERK1/2 was identified to be important for anticancer activity of the alkaloid. Synergistic effects of DBF were observed in combination with PARP-inhibitor olaparib most likely due to the induction of ROS production by the marine alkaloid. In addition, DBF intensified effects of platinum-based drugs cisplatin and carboplatin, and taxane derivatives docetaxel and cabazitaxel. Finally, DBF inhibited AR-signaling and resensitized AR-V7-positive 22Rv1 prostate cancer cells to enzalutamide, presumably due to AR-V7 down-regulation. These findings propose DBF to be a promising novel drug candidate for the treatment of human PCa regardless of resistance to standard therapy.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Drug Resistance, Neoplasm , Oxindoles/pharmacology , Prostatic Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Humans , Male , Mitogen-Activated Protein Kinases/metabolism , PC-3 Cells , Phosphorylation , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Receptors, Androgen/metabolism , Signal Transduction
13.
Int J Mol Sci ; 21(21)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33171937

ABSTRACT

Overcoming drug resistance of cancer cells is the major challenge in molecular oncology. Here, we demonstrate that long non-coding RNA LINC00973 is up-regulated in normal and cancer cells of different origins upon treatment with different chemotherapeutics. Bioinformatics analysis shows that this is a consequence of DNA damage response pathway activation or mitotic arrest. Knockdown of LINC0973 decreases p21 levels, activates cellular proliferation of cancer cells, and suppresses apoptosis of drug-treated cells. We have found that LINC00973 strongly increases p21 protein content, possibly by blocking its degradation. Besides, we have found that ectopic over-expression of LINC00973 inhibits formation of the pro-survival p53-Ser15-P isoform, which preserves chromosome integrity. These results might open a new approach to the development of more efficient anti-cancer drugs.


Subject(s)
Drug Resistance, Neoplasm/genetics , Neoplasms/genetics , RNA, Long Noncoding/genetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , HCT116 Cells , Humans , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism
14.
Viruses ; 12(5)2020 05 25.
Article in English | MEDLINE | ID: mdl-32466195

ABSTRACT

HIV-1 infection is a complex, multi-step process involving not only viral, but also multiple cellular factors. To date, drug discovery methods have primarily focused on the inhibition of single viral proteins. We present an efficient and unbiased approach, compatible with biosafety level 1 (BSL-1) conditions, to identify inhibitors of HIV-1 reverse transcription, intracellular trafficking, nuclear entry and genome integration. Starting with a fluorescent assay setup, we systematically improved the screening methodology in terms of stability, efficiency and pharmacological relevance. Stability and throughput were optimized by switching to a luciferase-based readout. BSL-1 compliance was achieved without sacrificing pharmacological relevance by using lentiviral particles pseudo-typed with the mouse ecotropic envelope protein to transduce human PM1 T cells gene-modified to express the corresponding murine receptor. The cellular assay was used to screen 26,048 compounds selected for maximum diversity from a 200,640-compound in-house library. This yielded z' values greater than 0.8 with a hit rate of 3.3% and a confirmation rate of 50%. We selected 93 hits and enriched the collection with 279 similar compounds from the in-house library to identify promising structural features. The most active compounds were validated using orthogonal assay formats. The similarity of the compound profiles across the different platforms demonstrated that the reported lentiviral assay system is a robust and versatile tool for the identification of novel HIV-1 inhibitors.


Subject(s)
Drug Evaluation, Preclinical/methods , Genetic Vectors , HIV-1/drug effects , High-Throughput Screening Assays/methods , Lentivirus/genetics , Animals , Anti-HIV Agents/pharmacology , Cell Line , Containment of Biohazards , Drug Development , Drug Discovery , HEK293 Cells , Humans , Mice , Viral Envelope Proteins , Virion
15.
Front Oncol ; 9: 1046, 2019.
Article in English | MEDLINE | ID: mdl-31681584

ABSTRACT

Pediatric cancers represent a wide variety of different tumors, though they have unique features that distinguish them from adult cancers. Receptor tyrosine kinases KIT and TrkA functions in AML and NB, respectively, are well-characterized. Though expression of these receptors is found in both tumors, little is known about KIT function in NB and TrkA in AML. By combining gene enrichment analysis with multidimensional scaling we showed that pediatric AMLs with t(8;21) or inv16 and high KIT expression levels stand out from other AML subtypes as they share prominent transcriptomic features exclusively with KIT-overexpressing NBs. We showed that AML cell lines had a predominant expression of an alternative TrkAIII isoform, which reportedly has oncogenic features, while NB cell lines had dominating TrkAI-II isoforms. NB cells, on the other hand, had an abnormal ratio of KIT isoforms as opposed to AML cells. Both SCF and NGF exerted protective action against doxorubicin and cytarabine for t(8;21) AML and NB cells. We identified several gene sets both unique and common for pediatric AML and NB, and this expression is associated with KIT or TrkA levels. NMU, DUSP4, RET, SUSD5, NOS1, and GABRA5 genes are differentially expressed in NBs with high KIT expression and are associated with poor survival in NB. We identified HOXA10, BAG3, and MARCKS genes that are connected with TrkA expression and are marker genes of poor outcome in AML. We also report that SLC18A2, PLXNC1, and MRPL33 gene expression is associated with TrkA or KIT expression levels in both AML and NB, and these genes have a prognostic value for both cancers. Thus, we have provided a comprehensive characterization of TrkA and KIT expression along with the oncogenic signatures of these genes across two pediatric tumors.

16.
Biochimie ; 151: 67-72, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29870803

ABSTRACT

Early prediction of tumor relapse depends on the identification of new prognostic cancer biomarkers, which are suitable for monitoring tumor response to different chemotherapeutic drugs. Using RNA-Seq, RT-qPCR, bioinformatics, and studies utilizing the murine tumor xenograft model, we have found significant and consistent changes in the abundance of five lincRNAs (LINC00973, LINC00941, CASC19, CCAT1, and BCAR4) upon treatment of both HT-29 and HCT-116 cells with 5-fluorouracil, oxaliplatin, and irinotecan at different doses and durations; both in vitro and in vivo. The most frequent changes were detected for LINC00973, whose content is most strongly and consistently increased upon treatment of both colon cancer cell lines with all three chemotherapeutic drugs. Additional studies are required in order to determine the molecular mechanisms by which anticancer drugs affect LINC00973 expression and to define the consequences of its upregulation on drug resistance of cancer cells.


Subject(s)
Antineoplastic Agents/therapeutic use , Colonic Neoplasms/drug therapy , RNA, Long Noncoding/genetics , Animals , Biomarkers, Tumor , HCT116 Cells , HT29 Cells , Humans , Mice , Transcription, Genetic/drug effects , Xenograft Model Antitumor Assays
17.
Int J Mol Sci ; 18(11)2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29113144

ABSTRACT

The hepatitis C virus (HCV) causes chronic liver disease leading to fibrosis, cirrhosis, and hepatocellular carcinoma. HCV infection triggers various types of cell death which contribute to hepatitis C pathogenesis. However, much is still unknown about the impact of viral proteins on them. Here we present the results of simultaneous immunocytochemical analysis of markers of apoptosis, autophagy, and necrosis in Huh7.5 cells expressing individual HCV proteins or their combinations, or harboring the virus replicon. Stable replication of the full-length HCV genome or transient expression of its core, Е1/Е2, NS3 and NS5B led to the death of 20-47% cells, 72 h posttransfection, whereas the expression of the NS4A/B, NS5A or NS3-NS5B polyprotein did not affect cell viability. HCV proteins caused different impacts on the activation of caspases-3, -8 and -9 and on DNA fragmentation. The structural core and E1/E2 proteins promoted apoptosis, whereas non-structural NS4A/B, NS5A, NS5B suppressed apoptosis by blocking various members of the caspase cascade. The majority of HCV proteins also enhanced autophagy, while NS5A also induced necrosis. As a result, the death of Huh7.5 cells expressing the HCV core was induced via apoptosis, the cells expressing NS3 and NS5B via autophagy-associated death, and the cells expressing E1/E2 glycoproteins or harboring HCV the replicon via both apoptosis and autophagy.


Subject(s)
Carcinoma, Hepatocellular/genetics , Hepacivirus/genetics , Liver Neoplasms/genetics , Viral Nonstructural Proteins/genetics , Apoptosis/genetics , Autophagy/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Caspases/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Genome, Viral/genetics , Hepacivirus/pathogenicity , Hepatitis C/genetics , Hepatitis C/virology , Humans , Liver Cirrhosis/genetics , Liver Cirrhosis/virology , Liver Neoplasms/pathology , Liver Neoplasms/virology , Signal Transduction , Transfection , Virus Replication/genetics
18.
Redox Biol ; 13: 310-319, 2017 10.
Article in English | MEDLINE | ID: mdl-28601781

ABSTRACT

Our previous findings suggested that reversible thiol modifications of cysteine residues within the actuator (AD) and nucleotide binding domain (NBD) of the Na,K-ATPase may represent a powerful regulatory mechanism conveying redox- and oxygen-sensitivity of this multifunctional enzyme. S-glutathionylation of Cys244 in the AD and Cys 454-458-459 in the NBD inhibited the enzyme and protected cysteines' thiol groups from irreversible oxidation under hypoxic conditions. In this study mutagenesis approach was used to assess the role these cysteines play in regulation of the Na,K-ATPase hydrolytic and signaling functions. Several constructs of mouse α1 subunit of the Na,K-ATPase were produced in which Cys244, Cys 454-458-459 or Cys 244-454-458-459 were replaced by alanine. These constructs were expressed in human HEK293 cells. Non-transfected cells and those expressing murine α1 subunit were exposed to hypoxia or treated with oxidized glutathione (GSSG). Both conditions induced inhibition of the wild type Na,K-ATPase. Enzymes containing mutated mouse α1 lacking Cys244 or all four cysteines (Cys 244-454-458-459) were insensitive to hypoxia. Inhibitory effect of GSSG was observed for wild type murine Na,K-ATPase, but was less pronounced in Cys454-458-459Ala mutant and completely absent in the Cys244Ala and Cys 244-454-458-459Ala mutants. In cells, expressing wild type enzyme, ouabain induced activation of Src and Erk kinases under normoxic conditions, whereas under hypoxic conditions this effect was inversed. Cys454-458-459Ala substitution abolished Src kinase activation in response to ouabain treatment, uncoupled Src from Erk signaling, and interfered with O2-sensitivity of Na,K-ATPase signaling function. Moreover, modeling predicted that S-glutathionylation of Cys 458 and 459 should prevent inhibitory binding of Src to NBD. Our data indicate for the first time that cysteine residues within the AD and NBD influence hydrolytic as well as receptor function of the Na,K-ATPase and alter responses of the enzyme to hypoxia or upon treatment with cardiotonic steroids.


Subject(s)
Catalytic Domain , Sodium-Potassium-Exchanging ATPase/chemistry , Amino Acid Substitution , Cell Hypoxia , HEK293 Cells , Humans , Hydrolysis , MAP Kinase Signaling System , Oxygen/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
19.
Sci Rep ; 6: 37905, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27892500

ABSTRACT

mRNAs lacking 5' untranslated regions (leaderless mRNAs) are molecular relics of an ancient translation initiation pathway. Nevertheless, they still represent a significant portion of transcriptome in some taxons, including a number of eukaryotic species. In bacteria and archaea, the leaderless mRNAs can bind non-dissociated 70 S ribosomes and initiate translation without protein initiation factors involved. Here we use the Fleeting mRNA Transfection technique (FLERT) to show that translation of a leaderless reporter mRNA is resistant to conditions when eIF2 and eIF4F, two key eukaryotic translation initiation factors, are inactivated in mammalian cells. We report an unconventional translation initiation pathway utilized by the leaderless mRNA in vitro, in addition to the previously described 80S-, eIF2-, or eIF2D-mediated modes. This mechanism is a bacterial-like eIF5B/IF2-assisted initiation that has only been reported for hepatitis C virus-like internal ribosome entry sites (IRESs). Therefore, the leaderless mRNA is able to take any of four different translation initiation pathways in eukaryotes.


Subject(s)
Eukaryotic Cells/physiology , Peptide Chain Initiation, Translational/physiology , RNA, Messenger/metabolism , Cell-Free System , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , HEK293 Cells , Hepatitis C/genetics , Humans , Internal Ribosome Entry Sites , Multiprotein Complexes , Protein Biosynthesis , RNA, Messenger/genetics , Saccharomyces cerevisiae/genetics , Transfection/methods
20.
Nucleosides Nucleotides Nucleic Acids ; 35(8): 389-403, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27351110

ABSTRACT

Overexpression of inducible subunits of immunoproteasome is related to pathogenesis of some chronic diseases. Specific inhibition of the immunosubunits may be used for the treatment of these diseases and RNA interference is one of the potent methods used in this area. We designed 2'-O-methyl modified siRNAs with selectively protected nuclease-sensitive sites, which efficiently silence LMP2, LMP7, and MECL-1 genes expression. To provide stable long-lasting inhibition of target genes, short-hairpin RNAs (shRNA) expressed by lentiviral vectors were constructed. Our results demonstrated that chemically modified siRNAs inhibited the expression of target genes with similar efficiency or with efficiency exceeding that of corresponding shRNAs and provide silencing effect for 5 days.


Subject(s)
Cysteine Endopeptidases/genetics , Proteasome Endopeptidase Complex/genetics , RNA Interference , RNA, Small Interfering/genetics , Cysteine Endopeptidases/metabolism , Cytidine/analogs & derivatives , Cytidine/chemistry , Gene Expression , Genetic Vectors , HEK293 Cells , Humans , Lentivirus/genetics , Proteasome Endopeptidase Complex/metabolism , RNA, Small Interfering/chemistry , Transcriptional Activation , Uridine/analogs & derivatives , Uridine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL