Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Exp Neurol ; 374: 114683, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38211684

ABSTRACT

Cerebral amyloid angiopathy (CAA) is a prevalent comorbidity among patients with Alzheimer's disease (AD), present in up to 80% of cases with varying levels of severity. There is evidence to suggest that CAA might intensify cognitive deterioration in AD patients, thereby accelerating the development of AD pathology. As a source of amyloids, it has been postulated that platelets play a significant role in the pathogenesis of both AD and CAA. Although several studies have demonstrated that platelet activation plays an important role in the pathogenesis of AD and CAA, a clear understanding of the mechanisms involved in the three steps: platelet activation, platelet adhesion, and platelet aggregation in AD pathogenesis still remains elusive. Moreover, potential therapeutic targets in platelet-mediated AD pathogenesis have not been explicitly addressed. Therefore, the aim of this review is to collate and discuss the in vitro, in vivo, and clinical evidence related to platelet dysfunction, including associated activation, adhesion, and aggregation, with specific reference to amyloid-related AD pathogenesis. Potential therapeutic targets of platelet-mediated AD pathogenesis are also discussed. By enriching the understanding of the intricate relationship between platelet dysfunction and onset of AD, researchers may unveil new therapeutic targets or strategies to tackle this devastating neurodegeneration.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Cerebral Amyloid Angiopathy/pathology , Brain/metabolism
2.
Mol Neurobiol ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38148371

ABSTRACT

High-fat diet consumption for an extended period causes obesity, systemic metabolic disturbance, and brain insulin resistance, resulting in neuroinflammation. Although the beneficial effect of Cyclosorus terminans extract on obesity-related insulin resistance has been demonstrated, little is known about how it affects neuroinflammation and brain insulin resistance in obese rats. Male Wistar rats were given either a normal diet (ND, n = 6) or a high-fat diet (HFD, n = 24) for a total of 14 weeks. At the beginning of the week, 13 rats in the ND group were given vehicle orally for 2 weeks, while rats on HFD diets were randomized to one of four groups and given either vehicle, 100 mg/kg/day of Cyclosorus terminans extract, 200 mg/kg/day of Cyclosorus terminans extract, or 20 mg/kg/day of pioglitazone orally for 2 weeks. After the experimental period, blood and brain samples were taken to assess metabolic and brain parameters. HFD-fed rats had obesity, systemic and brain insulin resistance, brain inflammation, microglial and astrocyte hyperactivity, and brain necroptosis. Treatment with 200 mg/kg/day of Cyclosorus terminans extract and pioglitazone equally attenuated obesity, insulin resistance, brain insulin dysfunction, and neuroinflammation in insulin resistant rats. Our findings suggest that Cyclosorus terminans extract may hold promise as a therapeutic agent for insulin resistance and neuroinflammation in obese conditions.

3.
FASEB J ; 37(11): e23262, 2023 11.
Article in English | MEDLINE | ID: mdl-37855727

ABSTRACT

Obesity accelerates the aging processes, resulting in an aggravation of aging-induced osteoporosis. We investigated the anti-osteoporotic effect of hyperbaric oxygen therapy (HBOT) in obese- and lean-aged rats through measurement of cellular senescence, hypoxia, inflammation, antioxidants, and bone microarchitecture. Obese and lean male Wistar rats were injected with 150 mg/kg/day of D-galactose for 8 weeks to induce aging. Then, all rats were randomly given either sham or HBOT for 14 days. Metabolic parameters were determined. Expression by bone mRNA for cellular senescence, hypoxia, inflammation, antioxidative capacity, and bone remodeling were examined. Micro-computed tomography and atomic absorption spectroscopy were performed to evaluate bone microarchitecture and bone mineral profiles, respectively. We found that HBOT restored the alterations in the mRNA expression level of p16, p21, HIF-1α, TNF-α, IL-6, RANKL, RANK, NFATc1, DC-STAMP, Osx, ALP, and Col1a1 in the bone in obese-and lean- aging rats. In obese-aging rats, HBOT increased the level of expression of Sirt1 and CuZnSOD mRNA and diminished the expression level of HIF-2α and ctsk mRNA to the same levels as the control group. However, HBOT failed to alter catalase and OCN mRNA expression in obese-aged rats. HBOT partially improved the bone microarchitecture in obese-aged rats, but completely restored it in lean-aged rats. Interestingly, HBOT protected against obesity-induced demineralization in obese-aged rats. In summary, HBOT exerts an anti-osteoporotic effect in lean-aged rats and prevents some, but not all the negative effects of obese-aged conditions on bone health. Therefore, HBOT is considered as a potential therapy for aging-induced osteoporosis, regardless of obese status.


Subject(s)
Hyperbaric Oxygenation , Osteoporosis , Rats , Male , Animals , Rats, Wistar , Galactose , X-Ray Microtomography , Obesity/complications , Obesity/therapy , Osteoporosis/etiology , Osteoporosis/therapy , Inflammation , Hypoxia , RNA, Messenger
4.
Arch Toxicol ; 97(4): 913-930, 2023 04.
Article in English | MEDLINE | ID: mdl-36781433

ABSTRACT

Environmental pollution, which contains ambient particulate matter, has been shown to have a significant impact on human health and longevity over the past 30 years. Recent studies clearly showed that exposure to particulate matter directly caused adverse effects on the respiratory system via various mechanisms including the accumulation of free radical peroxidation, the imbalance of intercellular calcium regulation, and inflammation, resulting in respiratory diseases. Recent evidence showed the importance of the role of the respiratory microbiome on lung immunity and lung development. In addition, previous studies have confirmed that several chronic respiratory diseases were associated with an alteration in the respiratory microbiome. However, there is still a lack of knowledge with regard to the changes in the respiratory microbiome with regard to the role of particulate matter exposure in respiratory diseases. Therefore, this review aims to summarize and discuss all the in vivo to clinical evidence which investigated the effect of particulate matter exposure on the respiratory microbiome and respiratory diseases. Any contradictory findings are incorporated and discussed. A summary of all these pieces of evidence may offer an insight into a therapeutic approach for the respiratory diseases related to particulate matter exposure and respiratory microbiome.


Subject(s)
Air Pollutants , Air Pollution , Microbiota , Respiratory Tract Diseases , Humans , Particulate Matter/adverse effects , Air Pollutants/adverse effects , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Lung , Respiratory Tract Diseases/chemically induced
6.
J Gerontol A Biol Sci Med Sci ; 78(3): 384-391, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36148512

ABSTRACT

Mitochondrial dysfunction is a factor potentially contributing to the Aging process. However, evidence surrounding changes in mitochondrial function and aging is still limited; therefore, this study aimed to investigate further the association between them. Possible confounding factors were included in the statistical analysis to explore the possibility of any independent associations. One thousand seven hundred and sixty-nine participants (619 middle-aged adults [age < 65] and 1,150 older adults [age ≥ 65]) from the Electricity Generating Authority of Thailand were enrolled in the study. The clinical characteristics and medical history were collected. Peripheral blood mononuclear cells (PBMCs) were isolated from venous blood and used for analysis of mitochondrial function. Several parameters pertinent to mitochondrial respiration including non-mitochondrial respiration, basal respiration, maximal respiration, proton leak, and spare respiratory capacity were found to be two to three times lower in the mitochondria isolated from the cells of older adults. Interestingly, the mitochondrial ATP production was only slightly reduced, and the percentage of coupling efficiency of PBMC mitochondria was significantly higher in the older adult group. The mitochondrial mass and oxidative stress were significantly reduced in older adult participants; however, the ratio of oxidative stress to mass was significantly increased. The association of these parameters with age was still shown to be the same from the outcome of the multivariate analyses. The mitochondrial functions and mitochondrial mass in PBMCs were shown to decline in association with age. However, the upregulation of mitochondrial oxidative stress production and mitochondrial coupling efficiency might indicate a compensatory response in mitochondria during aging.


Subject(s)
Cell Respiration , Leukocytes, Mononuclear , Humans , Aged , Middle Aged , Leukocytes, Mononuclear/metabolism , Cell Respiration/physiology , Mitochondria/metabolism , Aging , Oxidative Stress
7.
Nutrients ; 14(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36432581

ABSTRACT

Interruptins A and B exhibited anti-diabetic, anti-inflammatory, and anti-oxidative effects. This study aimed to investigate the therapeutic ability of extract enriched by interruptins A and B (EEI) from an edible fern Cyclosorus terminans on insulin resistance and non-alcoholic fatty liver disease (NAFLD) in a high-fat diet (HFD)-induced obese rats and elucidate their possible mechanisms. HFD-induced obese rats were treated with EEI for 2 weeks. Real-time polymerase chain reaction (PCR) was used to examine the molecular basis. We found that EEI supplementation significantly attenuated body and liver weight gain, glucose intolerance, and insulin resistance. Concurrently, EEI increased liver and soleus muscle glycogen storage and serum high-density lipoprotein (HDL) levels. EEI also attenuated NAFLD, as indicated by improving liver function. These effects were associated with enhanced expression of insulin signaling genes (Slc2a2, Slc2a4, Irs1 and Irs2) along with diminished expression of inflammatory genes (Il6 and Tnf). Furthermore, EEI led to the suppression of lipogenesis genes, Srebf1 and Fasn, together with an increase in fatty acid oxidation genes, Ppara and Cpt2, in the liver. These findings suggest that EEI could ameliorate HFD-induced insulin resistance and NAFLD via improving insulin signaling pathways, inflammatory response, lipogenesis, and fatty acid oxidation.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Tracheophyta , Rats , Animals , Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/chemically induced , Insulin Resistance/genetics , Obesity/drug therapy , Obesity/etiology , Insulin/metabolism , Anti-Inflammatory Agents/pharmacology , Tracheophyta/metabolism , Fatty Acids/adverse effects
8.
Neurotoxicology ; 93: 112-127, 2022 12.
Article in English | MEDLINE | ID: mdl-36152729

ABSTRACT

Chemotherapy-induced neurotoxicity is one of the most prevalent side effects in cancer patients and survivors. Cognitive decline and peripheral neuropathy are the most common chemotherapy-induced neurotoxic symptoms. These symptoms lead not only to the limiting of the dose of chemotherapy given to cancer patients, but also have an impact on the quality of life of cancer survivors. Although the exact mechanisms involved in chemotherapy-induced neurotoxicity are still unclear, neuroinflammation is widely regarded as being one of the major causes involved in chemotherapy-induced neurotoxicity. It is known that Toll-like receptor 4 (TLR4) plays a critical role in the inflammatory process, and it has been recently reported that it is associated with chemotherapy-induced neurotoxicity. In this review, we summarize and discuss all available evidence regarding the activation of the TLR4 signaling pathway in various models of chemotherapy-induced neurotoxicity. This review also emphasizes the evidence pertinent to TLR4 inhibition on chemotherapy-induced neurotoxicity in rodent studies. Understanding the role of the TLR4 signaling pathway behind chemotherapy-induced neurotoxicity is crucial for improving treatments and ensuring the long-term survival of cancer patients.


Subject(s)
Antineoplastic Agents , Neoplasms , Neurotoxicity Syndromes , Peripheral Nervous System Diseases , Humans , Toll-Like Receptor 4/metabolism , Quality of Life , Neurotoxicity Syndromes/drug therapy , Peripheral Nervous System Diseases/chemically induced , Neoplasms/drug therapy , Antineoplastic Agents/toxicity
9.
PLoS One ; 17(8): e0273327, 2022.
Article in English | MEDLINE | ID: mdl-35984808

ABSTRACT

The cognitive impairment, depression, a decrease in the ability to perform activities of daily living (ADLs), and salivary gland dysfunction, as indicated by the reduction of alpha-amylase activity, have been reported in patients with type 2 diabetes (T2DM). However, the effects of depression on cognitive function, salivary alpha-amylase activity, and ADLs in T2DM patients have never been investigated. In this study, 115 participants were divided into three groups, including 30 healthy people, 50 T2DM patients without depression, and 35 T2DM patients with depression. Then, the cognitive function, the level of depression, salivary-alpha amylase activity, ADLs, and metabolic parameters were determined. Results showed that T2DM patients had hyperglycemia and cognitive impairment. A decrease in the salivary alpha-amylase activity was observed in T2DM patients. Interestingly, T2DM patients with depression had higher level of hyperglycemia and cognitive impairment than T2DM patients. Additionally, cognitive function was associated with the salivary-alpha amylase activity in T2DM without depression, while the severity of depression was associated with the salivary-alpha amylase activity in T2DM patients with depression. Therefore, we concluded that T2DM caused the impairment of metabolism, decreased salivary alpha-amylase activity, and cognitive impairment. Furthermore, T2DM patients with depression had higher level of hyperglycemia and cognitive decline than T2DM patients.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Hyperglycemia , Salivary alpha-Amylases , Activities of Daily Living , Cognitive Dysfunction/complications , Depression/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Humans , Hyperglycemia/complications
10.
J Nutr Biochem ; 110: 109125, 2022 12.
Article in English | MEDLINE | ID: mdl-35977664

ABSTRACT

Neurodegeneration, as indicated by brain dysfunction and cognitive decline, is one of the complications associated with obesity and estrogen deprivation. Calorie restriction and exercise regimes improved brain function in neurodegenerative diseases. However, the comparative effects of a combination of calorie restriction with exercise, calorie restriction, and an exercise regime alone on brain/cognitive function in obesity with or without estrogen deprivation have not been investigated. Sixty female rats were fed a normal diet (ND) or a high-fat diet (HFD) for 27 weeks. At week 13, the ND-fed rats underwent a sham operation with sedentary lifestyle, HFD-fed rats were divided into two groups: each having either a sham operation (HFS) or ovariectomy (HFO). At week 20, HFD-fed rats in each group were divided into four subgroups undergoing either a sedentary lifestyle, calorie restriction, exercise regime or a combination of calorie restriction and exercise for 7 weeks. Insulin resistance, cognitive decline and hippocampal pathologies were found in both HFS and HFO rats. HFO rats had higher levels of insulin resistance and hippocampal reactive oxygen species levels than HFS rats. Calorie restriction decreased metabolic disturbance and hippocampal oxidative stress but failed to attenuate cognitive decline in HFS and HFO rats. Exercise attenuated metabolic/hippocampal dysfunctions, resulting in improved cognition only in HFS rats. Combined therapies restored brain function, and cognitive function in HFS and HFO rats. Therefore, a combination of calorie restriction with exercise is probably the greatest lifestyle modification to diminish the brain pathologies and cognitive decline in obesity with or without estrogen deprivation.


Subject(s)
Caloric Restriction , Insulin Resistance , Obesity , Physical Conditioning, Animal , Animals , Female , Rats , Diet, High-Fat/adverse effects , Estrogens , Obesity/therapy , Rats, Wistar
11.
Food Chem Toxicol ; 168: 113389, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36031162

ABSTRACT

Insulin resistance is an underlying condition prior to the development of several diseases, including type 2 diabetes, cardiovascular diseases, cognitive impairment, and cerebrovascular complications. Organophosphates (OPs) are one of several factors thought to induce insulin resistance. Previous studies showed that the exposure to OPs pesticides induced insulin resistance through the impairment of hepatic glucose metabolism, pancreatic damage, and disruption of insulin signaling of both adipose tissues and skeletal muscles. Several studies reported possible mechanisms associated with OPs-induced insulin resistance in different models in in vivo studies including those in adult animals, obese animals, and offspring models, as well as in clinical studies. In addition, pharmacological interventions in OPs-induced insulin resistance have been previously investigated. This review aims to summarize and discuss all the evidence concerning OPs-induced insulin resistance in different models including in vitro, in vivo and clinical studies. The interventions of OPs-induced insulin resistance are also discussed. Any contradictory findings also considered. The information from this review will provide insight for possible therapeutic approaches to OPs-induced insulin resistance in the future.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Pesticides , Animals , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Insulin , Organophosphates/adverse effects , Pesticides/toxicity
12.
FASEB Bioadv ; 4(6): 408-434, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35664831

ABSTRACT

The endogenous DNA damage triggering an aging progression in the elderly is prevented in the youth, probably by naturally occurring DNA gaps. Decreased DNA gaps are found during chronological aging in yeast. So we named the gaps "Youth-DNA-GAPs." The gaps are hidden by histone deacetylation to prevent DNA break response and were also reduced in cells lacking either the high-mobility group box (HMGB) or the NAD-dependent histone deacetylase, SIR2. A reduction in DNA gaps results in shearing DNA strands and decreasing cell viability. Here, we show the roles of DNA gaps in genomic stability and aging prevention in mammals. The number of Youth-DNA-GAPs were low in senescent cells, two aging rat models, and the elderly. Box A domain of HMGB1 acts as molecular scissors in producing DNA gaps. Increased gaps consolidated DNA durability, leading to DNA protection and improved aging features in senescent cells and two aging rat models similar to those of young organisms. Like the naturally occurring Youth-DNA-GAPs, Box A-produced DNA gaps avoided DNA double-strand break response by histone deacetylation and SIRT1, a Sir2 homolog. In conclusion, Youth-DNA-GAPs are a biomarker determining the DNA aging stage (young/old). Box A-produced DNA gaps ultimately reverse aging features. Therefore, DNA gap formation is a potential strategy to monitor and treat aging-associated diseases.

13.
Sci Rep ; 12(1): 8580, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35595806

ABSTRACT

We aimed to compare the time-course effect of D-galactose (D-gal)-induced aging, obesity, and their combined effects on bone homeostasis. Male Wistar rats were fed with either a normal diet (ND; n = 24) or a high-fat diet (HFD; n = 24) for 12 weeks. All rats were then injected with either vehicle or 150 mg/kg/day of D-gal for 4 or 8 weeks. Blood was collected to measure metabolic, aging, oxidative stress, and bone turnover parameters. Bone oxidative stress and inflammatory markers, as well as bone histomorphometry were also evaluated. Additionally, RAW 264.7 cells were incubated with either D-gal, insulin, or D-gal plus insulin to identify osteoclast differentiation capacity under the stimulation of receptor activator of nuclear factor κB ligand. At week 4, D-gal-induced aging significantly elevated serum malondialdehyde level and decreased trabecular thickness in ND- and HFD-fed rats, when compared to the control group. At week 8, D-gal-induced aging further elevated advanced glycation end products, increased bone inflammation and resorption, and significantly impaired bone microarchitecture in HFD-fed rats. The osteoclast number in vitro were increased in the D-gal, insulin, and combined groups to a similar extent. These findings suggest that aging aggravates bone dyshomeostasis in the obese condition in a time-dependent manner.


Subject(s)
Aging , Galactose , Aging/physiology , Animals , Galactose/pharmacology , Insulin/metabolism , Male , Obesity/complications , Obesity/metabolism , Oxidative Stress , Rats , Rats, Wistar
14.
Life Sci ; 295: 120406, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35182555

ABSTRACT

AIMS: To investigate the effects of hyperbaric oxygen therapy (HBOT) on metabolic disturbance, aging and bone remodeling in D-galactose-induced aging rats with and without obesity by determining the metabolic parameters, aging and oxidative stress markers, bone turnover markers, bone microarchitecture, and bone biomechanical strength. MATERIALS AND METHODS: Male Wistar rats were fed either a normal diet (ND; n = 18) or a HFD (n = 12) for 22 weeks. At week 13, vehicle (0.9% NaCl) was injected into ND-fed rats (NDV; n = 6), while 150 mg/kg/day of D-galactose was injected into 12 ND-fed rats (NDD) and 12 HFD-fed rats (HFDD) for 10 weeks. At week 21, rats were treated with either sham (NDVS, NDDS, or HFDDS; n = 6/ group) or HBOT (NDDH, or HFDDH; n = 6/group) for 14 days. Rats were then euthanized. Blood samples, femora, and tibiae were collected. KEY FINDINGS: Both NDD and HFDD groups developed aging as indicated by increased AGE level, increased inflammation and oxidative stress as shown by raised serum TNF-α and MDA levels, impaired bone remodeling as indicated by an increase in levels of CTX-1, TRACP-5b, and impaired bone structure/strength, when compared with those of the NDVS group. HFD aggravated these indicators of bone dyshomeostasis in D-galactose-treated rats. HBOT restored bone remodeling and bone structure/strength in the NDD group, however HBOT ameliorated bone dyshomeostasis in the HFDD group. SIGNIFICANCE: HBOT is a potential intervention to decrease the risk of osteoporosis and bone fracture in aging with or without obesity.


Subject(s)
Aging/physiology , Bone and Bones/metabolism , Hyperbaric Oxygenation/methods , Age Factors , Animals , Bone Remodeling/physiology , Bone and Bones/physiology , Diet, High-Fat , Galactose/adverse effects , Galactose/pharmacology , Homeostasis , Inflammation/metabolism , Insulin Resistance , Male , Obesity/metabolism , Obesity/physiopathology , Osteoporosis/metabolism , Oxidative Stress , Rats , Rats, Wistar
15.
Nutr Neurosci ; 25(6): 1115-1127, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33151133

ABSTRACT

BACKGROUND: Prediabetes can be characterized as obesity with metabolic disturbance, leading to cognitive decline and brain pathologies. D-allulose administration in obese animals decreased metabolic disturbance. However, the comparative effects of D-allulose and metformin on cognition and brain functions in the diet-induced prediabetic condition are unclear. We assume that both D-allulose and metformin equally restore cognition and brain functions in prediabetic rats to an equal extent. MATERIALS AND METHODS: Fifty-six rats were randomly divided into two groups: a control and diet-induced prediabetic group which had received a normal diet (ND) and a high-fat diet (HFD) for 24 weeks, respectively. After dietary protocol had been followed for 12 weeks, ND rats were given solely drinking water daily for 12 weeks. HFD-prediabetic rats randomly received drinking water with either D-allulose (1.9 g/kg/day of D-allulose) or metformin (300 mg/kg/day of metformin) for 12 weeks. Following this, cognition and brain parameters were determined. RESULTS: Brain oxidative stress, mitochondrial dysfunction, microglial hyper-activation, apoptosis, brain insulin insensitivity, hippocampal synaptic dysfunction, and cognitive decline were observed in prediabetic rats. D-allulose and metformin equally attenuated brain oxidative stress, brain mitochondrial ROS production, hippocampal apoptosis, brain insulin insensitivity, hippocampal synaptic dysfunction, resulting in improved learning process in prediabetic rats. Metformin conferred greater advantage on the amelioration of brain mitochondrial dysfunction and brain microglial hyper-activation than D-allulose, resulting in improvement in both learning and memory processes in prediabetic rats. CONCLUSIONS: Not only metformin, but also D-allulose, has beneficial effects on the enhancement of brain function and cognition in prediabetic condition.


Subject(s)
Cognitive Dysfunction , Drinking Water , Insulin Resistance , Insulins , Metformin , Prediabetic State , Animals , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Diet, High-Fat/adverse effects , Fructose , Insulin Resistance/physiology , Metformin/pharmacology , Metformin/therapeutic use , Obesity/metabolism , Prediabetic State/drug therapy , Rats , Rats, Wistar
16.
Biochim Biophys Acta Mol Basis Dis ; 1868(2): 166301, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34748903

ABSTRACT

Systemic inflammation is a key mediator of left ventricular dysfunction (LV) in prediabetes via the activation of myeloid differentiation factor 2 (MD2)/toll-like receptor 4 complex. The MD2 inhibitor L6H21 effectively reduced systemic and cardiac inflammation in obese mice. However, its effects on cardiac function and regulated cell death pathways in the heart in prediabetes are still unknown. The prediabetic rats were divided into 3 subgroups to receive vehicle, L6H21 (10, 20, 40 mg/kg) or metformin (300 mg/kg) for 1, 2 and 4 weeks. Then, metabolic parameters, cardiac sympathovagal balance, LV function, cardiac mitochondrial function, oxidative stress, inflammation, apoptosis, necroptosis, and ferroptosis were determined. All prediabetic rats exhibited cardiac sympathovagal imbalance, LV dysfunction, and cardiac mitochondrial dysfunction. All doses of L6H21 treatment for 2- and 4-weeks attenuated insulin resistance. L6H21 at 40 mg/kg attenuated cardiac autonomic imbalance and LV dysfunction after 1 week of treatment. Both 10 and 20 mg/kg of L6H21 required longer treatment duration to show these benefits. Mechanistically, all doses of L6H21 reduced cardiac mitochondrial dysfunction after 1 week of treatment, resulting in alleviated oxidative stress and inflammation. L6H21 also effectively suppressed cardiac apoptosis and ferroptosis, but it did not affect necroptosis in prediabetic rats. L6H21 provided the cardioprotective efficacy in dose- and time-dependent manners in prediabetic rats via reduction in apoptosis and ferroptosis.


Subject(s)
Chalcones/pharmacology , Ferroptosis , Heart Diseases/drug therapy , Inflammation/drug therapy , Lymphocyte Antigen 96/antagonists & inhibitors , Mitochondria, Heart/drug effects , Prediabetic State/physiopathology , Animals , Diet, High-Fat , Heart Diseases/metabolism , Heart Diseases/pathology , Inflammation/metabolism , Inflammation/pathology , Insulin Resistance , Male , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Rats , Rats, Wistar , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
17.
Br J Pharmacol ; 179(6): 1220-1236, 2022 03.
Article in English | MEDLINE | ID: mdl-34796473

ABSTRACT

BACKGROUND AND PURPOSE: Chronic high-fat diet (HFD) intake instigates prediabetes and brain pathologies, which include cognitive decline and neuroinflammation. The myeloid differentiation factor 2 (MD-2)/toll-like receptor 4 (TLR4) complex plays a pivotal role in neuroinflammation. The MD-2 inhibitor (L6H21) reduces systemic inflammation and metabolic disturbances in HFD-induced prediabetes. However, the potential role of L6H21, and its comparison with metformin, on brain pathologies in HFD-induced prediabetes has never been investigated. EXPERIMENTAL APPROACH: Male Wistar rats were given either a normal diet (ND) (n = 8) or a HFD (n = 104) for 16 weeks. At the 13th week, ND-fed rats were given a vehicle, whereas HFD-fed rats were randomly divided into 13 subgroups. Each subgroup was given vehicle, L6H21 (three doses) or metformin (300-mg·kg-1 ·day-1 ) for 1, 2 or 4 weeks. Metabolic parameters, cognitive function, brain mitochondrial function, brain TLR4-MD-2 signalling, microglial morphology, brain oxidative stress, brain cell death and dendritic spine density were investigated. KEY RESULTS: HFD-fed rats developed prediabetes, neuroinflammation, brain pathologies and cognitive impairment. All doses of L6H21 and metformin given to HFD-fed rats at 2 and 4 weeks attenuated metabolic disturbance. CONCLUSION AND IMPLICATIONS: In rats, L6H21 and metformin restored cognition and attenuated brain pathologies dose and time-dependently. These results indicate a neuroprotective role of MD-2 inhibitor in a model of prediabetes.


Subject(s)
Cognitive Dysfunction , Insulin Resistance , Metformin , Prediabetic State , Animals , Brain/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/prevention & control , Diet, High-Fat/adverse effects , Male , Metformin/pharmacology , Metformin/therapeutic use , Prediabetic State/drug therapy , Prediabetic State/metabolism , Prediabetic State/pathology , Rats , Rats, Wistar , Toll-Like Receptor 4/metabolism
18.
Antioxidants (Basel) ; 10(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34573016

ABSTRACT

Cerebral ischemia results in a poor oxygen supply and cerebral infarction. Reperfusion to the ischemic area is the best therapeutic approach. Although reperfusion after ischemia has beneficial effects, it also causes ischemia/reperfusion (I/R) injury. Increases in oxidative stress, mitochondrial dysfunction, and cell death in the brain, resulting in brain infarction, have also been observed following cerebral I/R injury. Mitochondria are dynamic organelles, including mitochondrial fusion and fission. Both processes are essential for mitochondrial homeostasis and cell survival. Several studies demonstrated that an imbalance in mitochondrial dynamics after cerebral ischemia, with or without reperfusion injury, plays an important role in the regulation of cell survival and infarct area size. Mitochondrial dysmorphology/dysfunction and inflammatory processes also occur after cerebral ischemia. Knowledge surrounding the mechanisms involved in the imbalance in mitochondrial dynamics following cerebral ischemia with or without reperfusion injury would help in the prevention or treatment of the adverse effects of cerebral injury. Therefore, this review aims to summarize and discuss the roles of mitochondrial dynamics, mitochondrial function, and inflammatory processes in cerebral ischemia with or without reperfusion injury from in vitro and in vivo studies. Any contradictory findings are incorporated and discussed.

19.
Nutrients ; 13(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34579018

ABSTRACT

BACKGROUND: High-fat diet (HFD) consumption induced gut dysbiosis, inflammation, obese-insulin resistance. Perilla seed oil (PSO) is a rich source of omega-3 polyunsaturated fatty acids with health promotional effects. However, the effects of PSO on gut microbiota/inflammation and metabolic disturbance in HFD-induced obesity have not been investigated. Therefore, we aimed to compare the effects of different doses of PSO and metformin on gut microbiota/inflammation, and metabolic parameters in HFD-fed rats. METHODS: Thirty-six male Wistar rats were fed either a normal diet or an HFD for 24 weeks. At week 13, HFD-fed rats received either 50, 100, and 500 mg/kg/day of PSO or 300 mg/kg/day metformin for 12 weeks. After 24 weeks, the metabolic parameters, gut microbiota, gut barrier, inflammation, and oxidative stress were determined. RESULTS: HFD-fed rats showed gut dysbiosis, gut barrier disruption with inflammation, increased oxidative stress, metabolic endotoxemia, and insulin resistance. Treatment with PSO and metformin not only effectively attenuated gut dysbiosis, but also improved gut barrier integrity and decreased gut inflammation. PSO also decreased oxidative stress, metabolic endotoxemia, and insulin resistance in HFD-fed rats. Metformin had greater benefits than PSO. CONCLUSION: PSO and metformin had the beneficial effect on attenuating gut inflammation and metabolic disturbance in obese-insulin resistance.


Subject(s)
Dysbiosis/drug therapy , alpha-Linolenic Acid/therapeutic use , Animals , Blotting, Western , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Hyperlipidemias/drug therapy , Insulin Resistance , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Lipopolysaccharides/blood , Male , Metformin/therapeutic use , Oxidative Stress , Plant Oils/therapeutic use , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction
20.
Aging (Albany NY) ; 13(8): 10955-10972, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33861726

ABSTRACT

Currently, the prevalence of obesity in aging populations is fast growing worldwide. Aging induced by D-galactose (D-gal) is proven to cause the worsening of cardiac dysfunction in pre-diabetic rats via deteriorating cardiac mitochondrial function. Hyperbaric oxygen therapy (HBOT) has been shown to attenuate D-gal-induced cognitive deterioration through decreased inflammation and apoptosis. We tested the hypothesis that HBOT alleviates D-gal induced cardiac dysfunction via improving mitochondrial function in pre-diabetic rats. Wistar rats (n=56) were fed normal diet or high-fat diet for 12 weeks. For subsequent 8 weeks, they were subcutaneously injected either vehicle (0.9% normal saline) or D-gal (150mg/kg/day). Rats were randomly subdivided into 7 groups at week 21: sham-treated (normal diet fed rats with vehicle (NDV), high-fat diet fed rats with vehicle (HFV), normal diet fed rats with D-gal (NDDg), high-fat diet fed rats with D-gal (HFDg)) and HBOT-treated (HFV, NDDg, HFDg). Sham rats received ambient pressure of oxygen while HBOT-treated ones received 100% oxygen given once daily for 60 minutes at 2 atmosphere absolute. HBOT reduced metabolic impairments, mitochondrial dysfunction and increased autophagy, resulting in an improvement of cardiac function in aged pre-diabetic rats.


Subject(s)
Aging/metabolism , Cardiovascular Diseases/therapy , Hyperbaric Oxygenation , Obesity/complications , Prediabetic State/therapy , Aging/drug effects , Animals , Apoptosis , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Diet, High-Fat/adverse effects , Disease Models, Animal , Galactose/administration & dosage , Galactose/toxicity , Humans , Injections, Subcutaneous , Male , Mitochondria, Heart/pathology , Obesity/metabolism , Obesity/therapy , Oxidative Stress , Oxygen/administration & dosage , Prediabetic State/complications , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...