Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters











Publication year range
1.
Inorg Chem ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226133

ABSTRACT

A series of new gold(I) and silver(I) N-heterocyclic carbenes bearing a 1-thio-ß-d-glucose tetraacetate moiety was synthesized and chemically characterized. The compounds' stability and solubility in physiological conditions were investigated employing a multitechnique approach. Interaction studies with biologically relevant proteins, such as superoxide dismutase (SOD) and human serum albumin (HSA), were conducted via UV-vis absorption spectroscopy and high-resolution ESI mass spectrometry. The biological activity of the compounds was evaluated in the A2780 and A2780R (cisplatin-resistant) ovarian cancer cell lines and the HSkMC (human skeletal muscle) healthy cell line. Inhibition studies of the selenoenzyme thioredoxin reductase (TrxR) were also carried out. The results highlighted that the gold complexes are more stable in aqueous environment and capable of interaction with SOD and HSA. Moreover, these carbenes strongly inhibited the TrxR activity. In contrast, the silver ones underwent structural alterations in the aqueous medium and showed greater antiproliferative activity.

2.
Chemistry ; : e202402647, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158114

ABSTRACT

Metals have been used in medicine for centuries. However, it was not until much later that the effects of inorganic drugs could be rationalized from a mechanistic point of view. Today, thanks to the technologies available, this approach has been functionally developed and implemented. It has been found that there is probably no single biological target for the pharmacological effects of most inorganic drugs. Herein, we present an overview of some integrated and multi-technique approaches to elucidate the molecular interactions underlying the biological effects of metallodrugs. On this premise, selected examples are used to illustrate how the information obtained on metal-based drugs and their respective mechanisms can become relevant for applications in fields other than medicine. For example, some well-known metallodrugs, which have been shown to bind specific amino acid residues of proteins, can be used to solve problems related to protein structure elucidation in crystallographic studies. Diruthenium tetraacetate can be used to catalyze the conversion of hydroxylamines to nitrones with a high selectivity when bound to lysozyme. Finally, a case study is presented in which an unprecedented palladium/arsenic-mediated catalytic cycle for nitrile hydration was discovered thanks to previous studies on the solution chemistry of the anticancer compound arsenoplatin-1 (AP-1).

3.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000514

ABSTRACT

The peculiar behavior of arsenoplatin-1, ([Pt(µ-NHC(CH3)O)2ClAs(OH)2], AP-1), in aqueous solution and the progressive appearance of a characteristic and intense blue color led us to carry out a more extensive investigation to determine the nature of this elusive chemical species, which we named "AsPt blue". A multi-technique approach was therefore implemented to describe the processes involved in the formation of AsPt blue, and some characteristic features of this intriguing species were revealed.


Subject(s)
Oxidation-Reduction , Water/chemistry , Solutions , Organoplatinum Compounds/chemistry
5.
Dalton Trans ; 53(23): 9700-9714, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38775704

ABSTRACT

Silver compounds are mainly studied as antimicrobial agents, but they also have anticancer properties, with the latter, in some cases, being better than their gold counterparts. Herein, we analyse the first example of a new Ag(I)-biscarbene that can bind non-canonical structures of DNA, more precisely G-quadruplexes (G4), with different binding signatures depending on the type of G4. Moreover, we show that this Ag-based carbene binds the i-motif DNA structure. Alternatively, its Au(I) counterpart, which was investigated for comparison, stabilises mitochondrial G4. Theoretical in silico studies elucidated the details of different binding modes depending on the geometry of G4. The two complexes showed increased cytotoxic activity compared to cisplatin, overcoming its resistance in ovarian cancer. The binding of these new drug candidates with other relevant biosubstrates was studied to afford a more complete picture of their possible targets. In particular, the Ag(I) complex preferentially binds DNA structures over RNA structures, with higher binding constants for the non-canonical nucleic acids with respect to natural calf thymus DNA. Regarding possible protein targets, its interaction with the albumin model protein BSA was also tested.


Subject(s)
DNA , G-Quadruplexes , Silver , DNA/chemistry , Silver/chemistry , Humans , Methane/chemistry , Methane/analogs & derivatives , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cattle , Animals , Serum Albumin, Bovine/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Fluorescent Dyes/chemistry
6.
Pharmaceutics ; 16(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399332

ABSTRACT

The use of platinum-based anticancer drugs, such as cisplatin, oxaliplatin, and carboplatin, is a common frontline option in cancer management, but they have debilitating side effects and can lead to drug resistance. Combination therapy with other chemotherapeutic agents, such as capecitabine and gemcitabine, has been explored. One approach to overcome these limitations is the modification of traditional Pt(II) drugs to obtain new molecules with an improved pharmacological profile, such as Pt(IV) prodrugs. The design, synthesis, and characterization of two novel Pt(IV) prodrugs based on oxaliplatin bearing the anticancer drugs gemcitabine or capecitabine in the axial positions have been reported. These complexes were able to dissociate into their constituents to promote cell death and induce apoptosis and cell cycle blockade in a representative colorectal cancer cell model. Specifically, the complex bearing gemcitabine resulted in being the most active on the HCT116 colorectal cancer cell line with an IC50 value of 0.49 ± 0.04. A pilot study on the encapsulation of these complexes in biocompatible PLGA-PEG nanoparticles is also included to confirm the retention of the pharmacological properties and cellular drug uptake, opening up to the possible delivery of the studied complexes through their nanoformulation.

7.
J Inorg Biochem ; 251: 112452, 2024 02.
Article in English | MEDLINE | ID: mdl-38070433

ABSTRACT

Three gold(I) linear compounds, sharing the general formula [AuI(LPh3)], have been synthesized and characterized. The nature of the ligand has been modified by moving down among some of the elements of group 15, i.e. phosphorus, arsenic and antimony. The structures of derived compounds have been solved through XRD and the reactivity behaviour towards selected biomolecules has been investigated through a multi-technique approach involving NMR, high-resolution mass spectrometry and IR. Moreover, the biological activity of the investigated compounds has been comparatively analyzed through classical methodologies and the disclosed differences are discussed in detail.


Subject(s)
Antineoplastic Agents , Auranofin , Auranofin/chemistry , Antimony/pharmacology , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
8.
Front Chem ; 11: 1253008, 2023.
Article in English | MEDLINE | ID: mdl-37608865

ABSTRACT

An unprecedented palladium/arsenic-based catalytic cycle for the hydration of nitriles to the corresponding amides is here described. It occurs in exceptionally mild conditions such as neutral pH and moderate temperature (60°C). The versatility of this new catalytic cycle was tested on various nitriles from aliphatic to aromatic. Also, the effect of ring substitution with electron withdrawing and electron donating groups was investigated in the cases of aromatic nitriles, as well as the effect of potentially interferent functional groups such as hydroxy group or pyridinic nitrogen. Furthermore, a pilot study on the potential suitability of this approach for its scale-up is presented, revealing that the catalytic cycle could be potentially and quickly scaled up.

9.
Inorg Chem ; 62(26): 10389-10396, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37342994

ABSTRACT

Auranofin, a gold(I)-based complex, is under clinical trials for application as an anticancer agent for the treatment of nonsmall-cell lung cancer and ovarian cancer. In the past years, different derivatives have been developed, modifying gold linear ligands in the search for new gold complexes endowed with a better pharmacological profile. Recently, a panel of four gold(I) complexes, inspired by the clinically established compound auranofin, was reported by our research group. As described, all compounds possess an [Au{P(OMe)3}]+ cationic moiety, in which the triethylphosphine of the parent compound auranofin was replaced with an oxygen-rich trimethylphosphite ligand. The gold(I) linear coordination geometry was complemented by Cl-, Br-, I-, and the auranofin-like thioglucose tetraacetate ligand. As previously reported, despite their close similarity to auranofin, the panel compounds exhibited some peculiar and distinctive features, such as lower log P values which can induce relevant differences in the overall pharmacokinetic profiles. To get better insight into the P-Au strength and stability, an extensive study was carried out for relevant biological models, including three different vasopressin peptide analogues and cysteine, using 31P NMR and LC-ESI-MS. A DFT computational study was also carried out for a better understanding of the theoretical fundamentals of the disclosed differences with regard to triethylphosphine parent compounds.


Subject(s)
Antineoplastic Agents , Auranofin , Auranofin/pharmacology , Auranofin/chemistry , Ligands , Gold/chemistry , Antineoplastic Agents/pharmacology , Magnetic Resonance Spectroscopy
10.
Molecules ; 28(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36770719

ABSTRACT

A panel of four novel gold(I) complexes, inspired by the clinically established gold drug auranofin (1-Thio-ß-D-glucopyranosatotriethylphosphine gold-2,3,4,6-tetraacetate), was prepared and characterized. All these compounds feature the replacement of the triethylphosphine ligand of the parent compound auranofin with a trimethylphosphite ligand. The linear coordination around the gold(I) center is completed by Cl-, Br-, I- or by the thioglucose tetraacetate ligand (SAtg). The in-solution behavior of these gold compounds as well as their interactions with some representative model proteins were comparatively analyzed through 31PNMR and ESI-MS measurements. Notably, all panel compounds turned out to be stable in aqueous media, but significant differences with respect to auranofin were disclosed in their interactions with a few leading proteins. In addition, the cytotoxic effects produced by the panel compounds toward A2780, A2780R and SKOV-3 ovarian cancer cells were quantitated and found to be in the low micromolar range, since the IC50 of all compounds was found to be between 1 µM and 10 µM. Notably, these novel gold complexes showed large and similar inhibition capabilities towards the key enzyme thioredoxin reductase, again comparable to those of auranofin. The implications of these results for the discovery of new and effective gold-based anticancer agents are discussed.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Phosphites , Humans , Female , Auranofin/pharmacology , Auranofin/chemistry , Gold/chemistry , Cell Line, Tumor , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
11.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674620

ABSTRACT

Photoactivatable Pt(IV) prodrugs represent nowadays an intriguing class of potential metal-based drugs, endowed with more chemical inertness in their oxidized form and better selectivity for the target with respect to the clinically established Pt(II) compounds. In fact, they have the possibility to be reduced by light irradiation directly at the site of interest. For this reason, we synthesized a new Pt(IV) complex, [Pt(OCOCH3)3(4'-phenyl-2,2':6',2''-terpyridine)][CF3SO3] (1), that is well soluble in aqueous medium and totally unreactive towards selected model biomolecules until its reduction. The highlight of this work is the rapid and efficient photoreduction of 1 with visible light (460 nm), which leads to its reactive Pt(II) analogue. This behavior was made possible by taking advantage of an efficient catalytic system based on flavin and NADH, which is naturally present in the cellular environment. As a comparison, the reduction of 1 was also studied with simple UV irradiation, but both UV-Vis spectrophotometry and 1H-NMR spectrometry showed that the flavin-catalyzed reduction with visible light was faster. Lastly, the reactivity against two representative biological targets, i.e., human serum albumin and one monofilament oligonucleotide fragment, was evaluated by high-resolution mass spectrometry. The results clearly pointed out that the prodrug 1 did not interact with these targets until its photoreduction to the Pt(II) analogue.


Subject(s)
Antineoplastic Agents , Prodrugs , Humans , Antineoplastic Agents/chemistry , Organoplatinum Compounds/chemistry , Light , Magnetic Resonance Spectroscopy , Prodrugs/chemistry
12.
Dalton Trans ; 52(3): 598-608, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36562298

ABSTRACT

Metal compounds form an attractive class of ligands for a variety of nucleic acids. Five metal complexes bearing aminopyridyl-2,2'-bipyridine tetradentate ligands and possessing a quasi-planar geometry were challenged toward different types of nucleic acid molecules including RNA polynucleotides in the duplex or triplex form, an RNA Holliday four-way junction, natural double helix DNA and a DNA G-quadruplex. The binding process was monitored comparatively using different spectroscopic and melting methods. The binding preferences that emerge from our analysis are discussed in relation to the structural features of the metal complexes.


Subject(s)
Coordination Complexes , Platinum , Platinum/chemistry , Coordination Complexes/chemistry , 2,2'-Dipyridyl , Palladium/chemistry , Gold , Ligands , DNA/chemistry , RNA
13.
Metallomics ; 15(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36515681

ABSTRACT

Diiron vinyliminium complexes constitute a large family of organometallics displaying a promising anticancer potential. The complexes [Fe2Cp2(CO)(µ-CO){µ-η1:η3-C(R3)C(R4)CN(R1)(R2)}]CF3SO3 (2a-c, 4a-d) were synthesized, assessed for their behavior in aqueous solutions (D2O solubility, Log Pow, stability in D2O/Me2SO-d6 mixture at 37°C over 48 h) and investigated for their antiproliferative activity against A2780 and A2780cisR ovarian cancer cell lines and the nontumoral one Balb/3T3 clone A31. Cytotoxicity data collected for 50 vinyliminium complexes were correlated with the structural properties (i.e. the different R1-R4 substituents) using the partial least squares methodology. A clear positive correlation emerged between the octanol-water partition coefficient and the relative antiproliferative activity on ovarian cancer cell lines, both of which appear as uncorrelated to the cancer cell selectivity. However, the different effects played by the R1-R4 substituents allow tracing guidelines for the development of novel, more effective compounds. Based on these results, three additional complexes (4p-r) were designed, synthesized and biologically investigated, revealing their ability to hamper thioredoxin reductase enzyme and to induce cancer cell production of reactive oxygen species.


Subject(s)
Ovarian Neoplasms , Humans , Female , Cell Line, Tumor , Ligands , Crystallography, X-Ray , Ovarian Neoplasms/drug therapy , Reactive Oxygen Species
14.
ACS Chem Neurosci ; 13(23): 3453-3463, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36346920

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a neurotrophin (NT) essential for neuronal development and synaptic plasticity. Dysregulation of BDNF signaling is implicated in different neurological disorders. The direct NT administration as therapeutics has revealed to be challenging. This has prompted the design of peptides mimicking different regions of the BDNF structure. Although loops 2 and 4 have been thoroughly investigated, less is known regarding the BDNF N-terminal region, which is involved in the selective recognition of the TrkB receptor. Herein, a dimeric form of the linear peptide encompassing the 1-12 residues of the BDNF N-terminal (d-bdnf) was synthesized. It demonstrated to act as an agonist promoting specific phosphorylation of TrkB and downstream ERK and AKT effectors. The ability to promote TrkB dimerization was investigated by advanced fluorescence microscopy and molecular dynamics (MD) simulations, finding activation modes shared with BDNF. Furthermore, d-bdnf was able to sustain neurite outgrowth and increase the expression of differentiation (NEFM, LAMC1) and polarization markers (MAP2, MAPT) demonstrating its neurotrophic activity. As TrkB activity is affected by zinc ions in the synaptic cleft, we first verified the ability of d-bdnf to coordinate zinc and then the effect of such complexation on its activity. The d-bdnf neurotrophic activity was reduced by zinc complexation, demonstrating the role of the latter in tuning the activity of the new peptido-mimetic. Taken together our data uncover the neurotrophic properties of a novel BDNF mimetic peptide and pave the way for future studies to understand the pharmacological basis of d-bdnf action and develop novel BDNF-based therapeutic strategies.


Subject(s)
Brain-Derived Neurotrophic Factor , Zinc , Zinc/pharmacology
15.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36430642

ABSTRACT

Auranofin (AF), a gold(I) compound that is currently used for the treatment of rheumatoid arthritis and is in clinical trials for its promising anticancer activity, was encapsulated within the human H-chain and the horse spleen ferritin nanocages using the alkaline disassembly/reassembly protocol. The aim of the work was to highlight possible differences in their drug loading capacity and efficacy. The drug-loaded ferritins were characterized via UV-vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy to assess AF encapsulation and to define the exact amount of gold atoms trapped in the Ft cavity. The crystal structures allowed us to define the nature of AF interaction with both ferritins and to identify the gold binding sites. Moreover, the biological characterization let us to obtain preliminary information on the cytotoxic effect of AF when bound to the human H-chain.


Subject(s)
Auranofin , Ferritins , Nanoparticle Drug Delivery System , Animals , Humans , Antineoplastic Agents/chemistry , Auranofin/chemistry , Auranofin/pharmacology , Binding Sites , Ferritins/chemistry , Ferritins/metabolism , Gold/chemistry , Horses , Nanoparticle Drug Delivery System/chemistry , Nanoparticle Drug Delivery System/pharmacology
16.
Dalton Trans ; 51(35): 13527-13539, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36000524

ABSTRACT

A novel gold(I) complex inspired by the known medicinal inorganic compounds auranofin and thimerosal, namely ethylthiosalicylate(triethylphosphine)gold(I) (AFETT hereafter), was synthesized and characterised and its structure was resolved through X-ray diffraction. The solution behavior of AFETT and its interactions with two biologically relevant proteins (i.e. human serum albumin and haemoglobin) and with a synthetic dodecapeptide reproducing the C-terminal portion of thioredoxin reductase were comparatively analyzed through 31P NMR and ESI-MS. Remarkable binding properties toward these biomolecules were disclosed. Moreover, the cytotoxic effects produced by AFETT on two ovarian cancer cell lines (A2780 and A2780 R) and one colorectal cancer cell line (HCT116) were analyzed and found to be strong and nearly superimposable to those of auranofin. Interestingly, for both compounds, the ability to induce downregulation of vimentin expression in A2780 R cells was evidenced. Despite its close similarity to auranofin, AFETT is reported to exhibit some peculiar and distinctive features such as a lower lipophilicity, an increased water solubility and a faster reactivity towards the selected target biomolecules. These differences might confer to AFETT significant pharmaceutical and therapeutic advantages over auranofin itself.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Antineoplastic Agents/chemistry , Auranofin/chemistry , Auranofin/pharmacology , Cell Line, Tumor , Female , Gold/chemistry , Humans
17.
Int J Mol Sci ; 23(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35886853

ABSTRACT

Ammonium trichloro (dioxoethylene-O,O') tellurate (AS101) is a potent immunomodulator prodrug that, in recent years, entered various clinical trials and was tested for a variety of potential therapeutic applications. It has been demonstrated that AS101 quickly activates in aqueous milieu, producing TeOCl3-, which likely represents the pharmacologically active species. Here we report on the study of the activation process of AS101 and of two its analogues. After the synthesis and characterization of AS101 and its derivatives, we have carried out a comparative study through a combined experimental and computational analysis. Based on the obtained results, we describe here, for the first time, the detailed reaction that AS101 and its bromido- and iodido-replaced analogues undergo in presence of water, allowing the conversion of the original molecule to the likely true pharmacophore. Interestingly, moving down in the halogens' group we observed a higher tendency to react, attributable to the ligands' effect. The chemical and mechanistic implications of these meaningful differences are discussed.


Subject(s)
Prodrugs , Adjuvants, Immunologic/therapeutic use , Ethylenes , Ligands , Prodrugs/pharmacology , Tellurium
18.
Int J Biol Macromol ; 211: 506-513, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35561865

ABSTRACT

The crystal structure of the human telomeric DNA Tel24 G-quadruplex (Tel24 = TAG3(T2AG3)3T) in complex with the novel [AuL] species (with L = 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine - TPymT-α) was solved by a novel joint molecular mechanical (MM)/quantum mechanical (QM) innovative approach. The quantum-refinement crystallographic method (crystallographic refinement enhanced with quantum mechanical calculation) was adapted to treat the [AuL]/G-quadruplex structure, where each gold complex in the binding site was found spread over four equally occupied positions. The four positions were first determined by docking restrained to the crystallographically determined metal ions' coordinates. Then, the quantum refinement method was used to resolve the poorly defined density around the ligands and improve the crystallographic determination, revealing that the binding preferences of this metallodrug toward Tel24 G-quadruplex arise from a combined effect of pyrimidine stacking, metal-guanine interactions and charge-charge neutralizing action of the π-acid triazine. The occurrence of interaction in solution with the Tel24 G-quadruplex DNA was further proved through DNA melting experiments, which showed a slight destabilisation of the quadruplex upon adduct formation.


Subject(s)
G-Quadruplexes , DNA/chemistry , Gold/chemistry , Humans , Ligands , Telomere , Triazines , X-Ray Diffraction
19.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35455422

ABSTRACT

ß-lactoglobulin is the major component of whey. Here, the adduct formed upon the reaction of the protein with oxaliplatin (OXA) has been prepared, structurally characterized by X-ray crystallography and electrospray ionization-mass spectrometry, and evaluated as a cytotoxic agent. The data demonstrate that OXA rapidly binds ß-lactoglobulin via coordination with a Met7 side chain upon release of the oxalate ligand. The adduct is significantly more cytotoxic than the free drug and induces apoptosis in cancer cells. Overall, our results suggest that metallodrug/ß-lactoglobulin adducts can be used as anticancer agents and that the protein can be used as a metallodrug delivery system.

20.
Molecules ; 27(8)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35458776

ABSTRACT

Auranofin (AF, hereafter) is an orally administered chrysotherapeutic agent approved for the treatment of rheumatoid arthritis that is being repurposed for various indications including bacterial infections. Its likely mode of action involves the impairment of the TrxR system through the binding of the pharmacophoric cation [AuPEt3]+. Accordingly, a reliable strategy to expand the medicinal profile of AF is the replacement of the thiosugar moiety with different ligands. Herein, we aimed to prepare the AF analogue bearing the acetylcysteine ligand (AF-AcCys, hereafter) and characterize its anti-staphylococcal activity. Biological studies revealed that AF-AcCys retains an antibacterial effect superimposable with that of AF against Staphylococcus aureus, whereas it is about 20 times less effective against Staphylococcus epidermidis. Bioinorganic studies confirmed that upon incubation with human serum albumin, AF-AcCys, similarly to AF, induced protein metalation through the [AuPEt3]+ fragment. Additionally, AF-AcCys appeared capable of binding the dodecapeptide Ac-SGGDILQSGCUG-NH2, corresponding to the tryptic C-terminal fragment (488-499) of hTrxR. To shed light on the pharmacological differences between AF and AF-AcCys, we carried out a comparative experimental stability study and a theoretical estimation of bond dissociation energies, unveiling the higher strength of the Au-S bond in AF-AcCys. From the results, it emerged that the lower lipophilicity of AF-AcCys with respect to AF could be a key feature for its different antibacterial activity. The differences and similarities between AF and AF-AcCys are discussed, alongside the opportunities and consequences that chemical structure modifications imply.


Subject(s)
Auranofin , Staphylococcal Infections , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Auranofin/chemistry , Auranofin/pharmacology , Humans , Staphylococcal Infections/drug therapy , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL