Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Arch Microbiol ; 203(9): 5647-5659, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34463810

ABSTRACT

The present study was aimed to assess the effect of gibberellic acids to enhance the growth, biomass, pigment, and exopolysaccharides production in Tetraselmis suecica under reciprocal nitrogen concentrations. For this study, the seven types of experimental media (N-P, NL-P/2GA3, N0-P/2GA3, NL-P/4GA3, N0-P/4GA3, NL-P/6GA3, and N0-P/6GA3) were prepared with the addition of gibberellic acids under various nitrogen concentrations. The experiment lasted for 15 days and the cell density, biomass, chlorophyll 'a', and exopolysaccharides (EPS) concentration of T. suecica were estimated for every 3 days. Then the EPS was subjected to the analyses of chemical (carbohydrate, protein, sulfate, and uronic acid), and antioxidant activity. In addition, nutrient removal efficiency was evaluated using different concentration of EPS. The highest DPPH (2,2-diphenyl-1-picrylhydrazyl) (86.7 ± 0.95%) and hydroxyl radical activity (85.7 ± 2.48%) were observed at the EPS concentrations 2.5 and 1.2 mg/mL, respectively. The immobilized magnetic Fe3O4-EPS (ferric oxide-exopolysaccharides) nanoparticles (5.0 and 10.0 g/L) have efficiently removed the excessive phosphate (89.5 ± 1.65%) and nitrate (73.5 ± 1.72%) from the Litopenaeus vannamei cultured wastewater. Thus, the application of gibberellic acids combined with limited nitrogen concentration could produce higher EPS that could exhibit excellent antioxidant activity, and nutrient removal efficacy in the form of Fe3O4-EPS magnetic nanoparticles.


Subject(s)
Antioxidants , Magnetite Nanoparticles , Antioxidants/pharmacology , Iron , Nitrogen , Nutrients
SELECTION OF CITATIONS
SEARCH DETAIL