ABSTRACT
Ants patrol foliage and exert a strong selective pressure on herbivorous insects, being their primary predators. As ants are chemically oriented, some organisms that interact with them (myrmecophiles) use chemical strategies mediated by their cuticular hydrocarbons (CHCs) to deal with ants. Thus, a better understanding of the ecology and evolution of the mutualistic interactions between myrmecophiles and ants depends on the accurate recognition of these chemical strategies. Few studies have examined whether treehoppers may use an additional strategy called chemical camouflage to reduce ant aggression, and none considered highly polyphagous pest insects. We analyzed whether the chemical similarity of the CHC profiles of three host plants from three plant families (Fabaceae, Malvaceae, and Moraceae) and the facultative myrmecophilous honeydew-producing treehopper Aetalion reticulatum (Hemiptera: Aetalionidae), a pest of citrus plants, may play a role as a proximate mechanism serving as a protection against ant attacks on plants. We found a high similarity (>80%) between the CHCs of the treehoppers and two of their host plants. The treehoppers acquire CHCs through their diet, and the chemical similarity varies according to host plant. Chemical camouflage on host plants plays a role in the interaction of treehoppers with their ant mutualistic partners.
ABSTRACT
Fungus-based biopesticides have been used worldwide for crop pest control as a safer alternative to chemical pesticides such as neonicotinoids. Both agrochemicals can be lethal and may also trigger side effects on the behavioral traits of non-target social insects, which play a crucial role in providing essential biological pest control services in agroecosystems. Here, we evaluated whether a commercial formulation of the entomopathogenic fungus Beauveria bassiana or the neonicotinoid imidacloprid causes mortality in foragers of Mischocyttarus metathoracicus. These social wasps are natural enemies of caterpillars and other herbivorous insects and inhabit both urban and agricultural environments in Brazil. We also tested whether wasps discriminate between biopesticide-exposed and unexposed conspecifics. Through a combination of laboratory (survival assay) and field experiments (lure presentation), along with chemical analyses (cuticular hydrocarbon profiles), we showed that topic exposure to the label rate of each pesticide causes a lethal effect, with the biopesticide exhibiting a slower effect. Moreover, wasps do not discriminate biopesticide-exposed from unexposed conspecifics, likely because of the similarity of their cuticular chemical profiles 24 h after exposure. Overall, the delayed lethal time at the individual level, combined with the indistinctive chemical cues of exposure and the lack of discrimination by conspecifics suggests that the fungal biopesticide may ultimately pose a threat to the colony survival of this predatory wasp.
Subject(s)
Beauveria , Pesticides , Wasps , Animals , Biological Control Agents , Hydrocarbons/analysis , Pest Control, BiologicalABSTRACT
During social interactions, the behavior of an individual often depends on the sex of its social partner. Many animal societies have males and females that play very different behavioral roles, although they coexist and interact non-sexually. At specific phases of the colony cycle, social wasp females and males are contemporaries within a nest, they often interact, although mating occurs mostly off the nest, therefore providing an opportunity to test sex discrimination in contexts other than classical sexual ones. We performed a lure presentation experiment to test if Mischocyttarus metathoracicus discriminate between conspecifics of the 2 sexes during on-nest social interactions. Female wasps discriminated conspecific sex during experimentally simulated nest intrusions. Visual and chemical cues may account for this sex discrimination. Despite sex discrimination (evidenced by differential inspective behavior from the nest females toward the female and the male lures), female wasps were as aggressive toward lures of both sexes. In the female-dominated hymenopteran societies, males are often subordinate and not aggressive on nest, resulting in females directing less aggression to them compared to other females. Instead, M. metathoracicus males and females are both aggressive toward nestmates, so they might be perceived as similar threat during on-nest social interactions.
ABSTRACT
Wasps (Vespidae) are important organisms to understand the evolution of social behaviour. Wasps show different levels of sociality, which includes solitary to highly eusocial organisms. In social insect species, queens and workers differ in physiology and morphology. The Neotropical swarm-founding wasps (Epiponini) show a variety of caste syndromes. In this clade, the caste-flexibility is a unique characteristic, in which workers can become queens and swarm to start a new nest. The investigation of the caste system comparing several Epiponini species show a clear-cut morphological distinction between queens and workers, with a morphological continuum between queens and workers. However, whether cuticular hydrocarbons (CHCs) are used as cues for caste recognition in swarm-founding wasps is still unknown. We studied whether CHCs may display caste-linked differences in eleven species of Epiponini wasps and if CHCs differences would follow morphological patterns. Our results suggest that queens and workers of Epiponini wasps are chemically different from each other at two levels, qualitatively and quantitatively, or merely quantitatively. This variation seems to exist regardless of their morphological traits and may be useful to help us understanding how chemical communication evolved differently in these species.
Subject(s)
Wasps , Animals , Wasps/anatomy & histology , Cues , Social Behavior , Hydrocarbons , PhenotypeABSTRACT
Division of labor is one of the most striking features in the evolution of eusociality. Juvenile hormone (JH) mediates reproductive status and aggression among nestmates in primitively eusocial Hymenoptera (species without morphologically distinct castes). In highly social species it has apparently lost its gonadotropic role and primarily regulates the division of labor in the worker caste. Polybia occidentalis, a Neotropical swarm-founding wasp, is an ideal model to understand how JH levels mirror social context and reproductive opportunities because of the absence of a clear morphological caste dimorphism. In this study, we tested the hypothesis that JH influences division of labor, ovary activation and cuticular hydrocarbon profiles of workers. Our observations confirmed that a JH analog (methoprene) and an inhibitor of JH biosynthesis (precocene) affected the cuticular chemical profile associated with age polyethism. Also, methoprene and precocene-I treatment of females influenced ovarian activation differently (individuals treated with methoprene expressed more activated ovaries while precocene treatment did not have significant effect). These results suggest that different hormonal levels induce a differential expression of cuticular chemicals associated with workers' age polyethism, which may be essential for keeping the social cohesion among workers throughout their lives in the colony. Furthermore, JH is likely to play a gonadotropic role in P. occidentalis. JH has apparently undergone certain modifications in social Hymenoptera, presenting multifaceted functions in different species.
Subject(s)
Juvenile Hormones , Wasps , Animals , Female , Hydrocarbons , Methoprene , Ovary , Wasps/physiologyABSTRACT
The dominance hierarchy in primitively eusocial insect societies has been shown to be mainly regulated through aggressive interactions. Females that are generally more dominant stand out and occupy the queen position, meaning that they monopolize reproduction while others perform other tasks. Chemical communication is important for maintaining social cohesion. Cuticular hydrocarbons are recognized as the main molecules responsible for mediating social interactions, especially nestmate recognition and queen signalling. Many highly eusocial groups have been studied in recent years, but primitively eusocial groups, which are key to understanding the evolution of social behavior, remain unexplored. In this study, we investigated the connection between cuticular hydrocarbons in females expressed in different social contexts in the primitively eusocial wasp Mischocyttarus cerberus. Colonies in two different ontogenetic phases, pre- and post-worker emergence, were used. We observed and categorized behavioral interactions between individual females and collected all individuals in a nest to obtain information on size, ovary activation and chemical composition. Furthermore, we conducted experiments in which the alpha (dominant) females were removed from nests to produce a new dominance hierarchy. We found that females in different hierarchical positions had small chemical difference corresponding with ovary activity. Our results support the hypothesis that cuticular hydrocarbons are associated with social context in this primitively eusocial species, with some compounds being associated with hierarchical position and ovarian activity.