Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731441

ABSTRACT

Nanoporous (NP) gold, the most extensively studied and efficient NP metal, possesses exceptional properties that make it highly attractive for advanced technological applications. Notably, its remarkable catalytic properties in various significant reactions hold enormous potential. However, the exploration of its catalytic activity in the degradation of water pollutants remains limited. Nevertheless, previous research has reported the catalytic activity of NP Au in the degradation of methyl orange (MO), a toxic azo dye commonly found in water. This study aims to investigate the behavior of nanoporous gold in MO solutions using UV-Vis absorption spectroscopy and high-performance liquid chromatography. The NP Au was prepared by chemical removal of silver atoms of an AuAg precursor alloy prepared by ball milling. Immersion tests were conducted on both pellets and powders of NP Au, followed by examination of the residual solutions. Additionally, X-ray photoelectron spectroscopy and electrochemical impedance measurements were employed to analyze NP Au after the tests. The findings reveal that the predominant and faster process involves the partially reversible adsorption of MO onto NP Au, while the catalytic degradation of the dye plays a secondary and slower role in this system.

2.
Adv Sci (Weinh) ; : e2400734, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622892

ABSTRACT

Heavy-metal-free III-V colloidal quantum dots (QDs) exhibit promising attributes for application in optoelectronics. Among them, InAs QDs are demonstrating excellent optical performance with respect to absorption and emission in the near-infrared spectral domain. Recently, InAs QDs attained a substantial improvement in photoluminescence quantum yield, achieving 70% at a wavelength of 900 nm through the strategic overgrowth of a thick ZnSe shell atop the InAs core. In the present study, light-emitting diodes (LEDs) based on this type of InAs/ZnSe QDs are fabricated, reaching an external quantum efficiency (EQE) of 13.3%, a turn-on voltage of 1.5V, and a maximum radiance of 12 Wsr-1m-2. Importantly, the LEDs exhibit an extensive emission dynamic range, characterized by a nearly linear correlation between emission intensity and current density, which can be attributed to the efficient passivation provided by the thick ZnSe shell. The obtained results are comparable to state-of-the-art PbS QD LEDs. Furthermore, it should be stressed not only that the fabricated LEDs are fully RoHS-compliant but also that the emitting InAs QDs are prepared via a synthetic route based on a non-pyrophoric, cheap, and commercially available as precursor, namely tris(dimethylamino)-arsine.

3.
Adv Healthc Mater ; : e2304331, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509761

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive brain cancer, characterized by a rapid and drug-resistant progression. GBM "builds" around its primary core a genetically heterogeneous tumor-microenvironment (TME), recruiting surrounding healthy brain cells by releasing various intercellular signals. Glioma-associated microglia (GAM) represent the largest population of collaborating cells, which, in the TME, usually exhibit the anti-inflammatory M2 phenotype, thus promoting an immunosuppressing environment that helps tumor growth. Conversely, "classically activated" M1 microglia could provide proinflammatory and antitumorigenic activity, expected to exert a beneficial effect in defeating glioblastoma. In this work, an immunotherapy approach based on proinflammatory modulation of the GAM phenotype is proposed, through a controlled and localized electrical stimulation. The developed strategy relies on the wireless ultrasonic excitation of polymeric piezoelectric nanoparticles coated with GBM cell membrane extracts, to exploit homotypic targeting in antiglioma applications. Such camouflaged nanotransducers locally generate electrical cues on GAM membranes, activating their M1 phenotype and ultimately triggering a promising anticancer activity. Collected findings open new perspectives in the modulation of immune cell activities through "smart" nanomaterials and, more specifically, provide an innovative auspicious tool in glioma immunotherapy.

4.
Adv Mater ; 36(21): e2312071, 2024 May.
Article in English | MEDLINE | ID: mdl-38377368

ABSTRACT

Designing robust and cost-effective electrocatalysts for efficient alkaline oxygen evolution reaction (OER) is of great significance in the field of water electrolysis. In this study, an electrochemical strategy to activate stainless steel (SS) electrodes for efficient OER is introduced. By cycling the SS electrode within a potential window that encompasses the Fe(II)↔Fe(III) process, its OER activity can be enhanced to a great extent compared to using a potential window that excludes this redox reaction, decreasing the overpotential at current density of 100 mA cm-2 by 40 mV. Electrochemical characterization, Inductively Coupled Plasma - Optical Emission Spectroscopy, and operando Raman measurements demonstrate that the Fe leaching at the SS surface can be accelerated through a Fe → γ-Fe2O3 → Fe3O4 or FeO → Fe2+ (aq.) conversion process, leading to the sustained exposure of Cr and Ni species. While Cr leaching occurs during its oxidation process, Ni species display higher resistance to leaching and gradually accumulate on the SS surface in the form of OER-active Fe-incorporated NiOOH species. Furthermore, a potential-pulse strategy is also introduced to regenerate the OER-activity of 316-type SS for stable OER, both in the three-electrode configuration (without performance decay after 300 h at 350 mA cm-2) and in an alkaline water electrolyzer (≈30 mV cell voltage increase after accelerated stress test-AST). The AST-stabilized cell can still reach 1000 and 4000 mA cm-2 at cell voltages of 1.69 and 2.1 V, which makes it competitive with state-of-the-art electrolyzers based on ion-exchange membrane using Ir-based anodes.

6.
Adv Mater ; 36(1): e2305567, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37722700

ABSTRACT

Bandgap tunability of lead mixed halide perovskites (LMHPs) is a crucial characteristic for versatile optoelectronic applications. Nevertheless, LMHPs show the formation of iodide-rich (I-rich) phase under illumination, which destabilizes the semiconductor bandgap and impedes their exploitation. Here, it is shown that how I2 , photogenerated upon charge carrier trapping at iodine interstitials in LMHPs, can promote the formation of I-rich phase. I2 can react with bromide (Br- ) in the perovskite to form a trihalide ion I2 Br- (Iδ- -Iδ+ -Brδ- ), whose negatively charged iodide (Iδ- ) can further exchange with another lattice Br- to form the I-rich phase. Importantly, it is observed that the effectiveness of the process is dependent on the overall stability of the crystalline perovskite structure. Therefore, the bandgap instability in LMHPs is governed by two factors, i.e., the density of native defects leading to I2 production and the Br- binding strength within the crystalline unit. Eventually, this study provides rules for the design of chemical composition in LMHPs to reach their full potential for optoelectronic devices.

7.
ACS Appl Mater Interfaces ; 15(50): 58260-58273, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38051559

ABSTRACT

Microglial cells play a critical role in glioblastoma multiforme (GBM) progression, which is considered a highly malignant brain cancer. The activation of microglia can either promote or inhibit GBM growth depending on the stage of the tumor development and on the microenvironment conditions. The current treatments for GBM have limited efficacy; therefore, there is an urgent need to develop novel and efficient strategies for drug delivery and targeting: in this context, a promising strategy consists of using nanoplatforms. This study investigates the microglial response and the therapeutic efficacy of dual-cell membrane-coated and doxorubicin-loaded hexagonal boron nitride nanoflakes tested on human microglia and GBM cells. Obtained results show promising therapeutic effects on glioma cells and an M2 microglia polarization, which refers to a specific phenotype or activation state that is associated with anti-inflammatory and tissue repair functions, highlighted through proteomic analysis.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Microglia , Proteomics , Glioblastoma/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Brain Neoplasms/pathology , Cell Membrane/pathology , Tumor Microenvironment/physiology , Cell Line, Tumor
8.
Nat Commun ; 14(1): 6760, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919279

ABSTRACT

Exploiting the light-matter interplay to realize advanced light responsive multimodal platforms is an emerging strategy to engineer bioinspired systems such as optoelectronic synaptic devices. However, existing neuroinspired optoelectronic devices rely on complex processing of hybrid materials which often do not exhibit the required features for biological interfacing such as biocompatibility and low Young's modulus. Recently, organic photoelectrochemical transistors (OPECTs) have paved the way towards multimodal devices that can better couple to biological systems benefiting from the characteristics of conjugated polymers. Neurohybrid OPECTs can be designed to optimally interface neuronal systems while resembling typical plasticity-driven processes to create more sophisticated integrated architectures between neuron and neuromorphic ends. Here, an innovative photo-switchable PEDOT:PSS was synthesized and successfully integrated into an OPECT. The OPECT device uses an azobenzene-based organic neuro-hybrid building block to mimic the retina's structure exhibiting the capability to emulate visual pathways. Moreover, dually operating the device with opto- and electrical functions, a light-dependent conditioning and extinction processes were achieved faithful mimicking synaptic neural functions such as short- and long-term plasticity.

9.
Polym Chem ; 14(38): 4465-4473, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-38013925

ABSTRACT

The possibility of generating regions with different electronic properties within the same organic semiconductor thin film could offer novel opportunities for designing and fabricating organic electronic devices and circuits. This study introduces a new approach based on a novel type of highly processable polymer precursor that can yield two different conjugated polymers characterized by complementary electronic properties, i.e. promoting electron or hole transport, from the same starting material. In particular, these multipotent precursors comprise functionalized dihydroanthracene units that can offer several functionalization opportunities to improve the solubility or insert specific functionalities. This strategy also allows for the preparation of high-molecular-weight conjugated polymers comprising diethynylanthracene and anthraquinone units without the need for solubilizing side chains. Thin films of the polymer precursor can be used, after solid-state transformations, to prepare single organic layers comprising regions characterized by different chemical nature and electronic properties. Here, we present a detailed characterization of the chemical and electronic properties of the precursor and the obtained conjugated polymers, showing how it is possible to harvest their characteristics for potential applications such as electrochromic surfaces and organic field-effect transistors.

10.
J Am Chem Soc ; 145(39): 21419-21431, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37747924

ABSTRACT

Combining multiple species working in tandem for different hydrogen evolution reaction (HER) steps is an effective strategy to design HER electrocatalysts. Here, we engineered a hierarchical electrode for the HER composed of amorphous-TiO2/Cu nanorods (NRs) decorated with cost-effective Ru-Cu nanoheterostructures (Ru mass loading = 52 µg/cm2). Such an electrode exhibits a stable, over 250 h, low overpotential of 74 mV at -200 mA/cm2 for the HER in 1 M NaOH. The high activity of the electrode is attributed, by structural analysis, operando X-ray absorption spectroscopy, and first-principles simulations, to synergistic functionalities: (1) mechanically robust, vertically aligned Cu NRs with high electrical conductivity and porosity provide fast charge and gas transfer channels; (2) the Ru electronic structure, regulated by the size of Cu clusters at the surface, facilitates the water dissociation (Volmer step); (3) the Cu clusters grown atop Ru exhibit a close-to-zero Gibbs free energy of the hydrogen adsorption, promoting fast Heyrovsky/Tafel steps. An alkaline electrolyzer (AEL) coupling the proposed cathode and a stainless-steel anode can stably operate in both continuous (1 A/cm2 for over 200 h) and intermittent modes (accelerated stress tests). A techno-economic analysis predicts the minimal overall hydrogen production cost of US$2.12/kg in a 1 MW AEL plant of 30 year lifetime based on our AEL single cell, hitting the worldwide targets (US$2-2.5/kgH2).

11.
Chem Mater ; 35(14): 5311-5321, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37528840

ABSTRACT

Lanthanide-doped LiYF4 (Ln:YLF) is commonly used for a broad variety of optical applications, such as lasing, photon upconversion and optical refrigeration. When synthesized as nanocrystals (NCs), this material is also of interest for biological applications and fundamental physical studies. Until now, it was unclear how Ln:YLF NCs grow from their ionic precursors into tetragonal NCs with a well-defined, bipyramidal shape and uniform dopant distribution. Here, we study the nucleation and growth of ytterbium-doped LiYF4 (Yb:YLF), as a template for general Ln:YLF NC syntheses. We show that the formation of bipyramidal Yb:YLF NCs is a multistep process starting with the formation of amorphous Yb:YLF spheres. Over time, these spheres grow via Ostwald ripening and crystallize, resulting in bipyramidal Yb:YLF NCs. We further show that prolonged heating of the NCs results in the degradation of the NCs, observed by the presence of large LiF cubes and small, irregular Yb:YLF NCs. Due to the similarity in chemical nature of all lanthanide ions our work sheds light on the formation stages of Ln:YLF NCs in general.

12.
Nat Commun ; 14(1): 4680, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37542064

ABSTRACT

Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm2. Here, we design a cost-effective and robust cathode, consisting of electrodeposited Ru nanoparticles (mass loading ~ 53 µg/cm2) on vertically oriented Cu nanoplatelet arrays grown on metallic meshes. Such cathode is coupled with an anode based on stacked stainless steel meshes, which outperform NiFe hydroxide catalysts. Our electrolyzers exhibit current densities as high as 1 A/cm2 at 1.69 V and 3.6 A/cm2 at 2 V, reaching the performances of proton-exchange membrane electrolyzers. Also, our electrolyzers stably operate in continuous (1 A/cm2 for over 300 h) and intermittent modes. A total production cost of US$2.09/kgH2 is foreseen for a 1 MW plant (30-year lifetime) based on the proposed electrode technology, meeting the worldwide targets (US$2-2.5/kgH2). Hence, the use of a small amount of Ru in cathodes (~0.04 gRu per kW) is a promising strategy to solve the dichotomy between the capital and operational expenditures of conventional alkaline electrolyzers for high-throughput operation, while facing the scarcity issues of Pt-group metals.

13.
ACS Energy Lett ; 8(6): 2789-2798, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37324538

ABSTRACT

We illustrate here the high photocatalytic activity of sustainable lead-free metal halide nanocrystals (NCs), namely, Cs3Sb2Br9 NCs, in the reduction of p-substituted benzyl bromides in the absence of a cocatalyst. The electronic properties of the benzyl bromide substituents and the substrate affinity to the NC surface determine the selectivity in C-C homocoupling under visible light irradiation. This photocatalyst can be reused for at least three cycles and preserves its good performance with a turnover number of ca. 105,000.

14.
ACS Energy Lett ; 8(6): 2801-2808, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37324539

ABSTRACT

Bandgap tuning is a crucial characteristic of metal-halide perovskites, with benchmark lead-iodide compounds having a bandgap of 1.6 eV. To increase the bandgap up to 2.0 eV, a straightforward strategy is to partially substitute iodide with bromide in so-called mixed-halide lead perovskites. Such compounds are prone, however, to light-induced halide segregation resulting in bandgap instability, which limits their application in tandem solar cells and a variety of optoelectronic devices. Crystallinity improvement and surface passivation strategies can effectively slow down, but not completely stop, such light-induced instability. Here we identify the defects and the intragap electronic states that trigger the material transformation and bandgap shift. Based on such knowledge, we engineer the perovskite band edge energetics by replacing lead with tin and radically deactivate the photoactivity of such defects. This leads to metal halide perovskites with a photostable bandgap over a wide spectral range and associated solar cells with photostable open circuit voltages.

15.
ACS Energy Lett ; 8(6): 2630-2640, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37324542

ABSTRACT

Organic-inorganic Pb-free layered perovskites are efficient broadband emitters and thus are promising materials for lighting applications. However, their synthetic protocols require a controlled atmosphere, high temperature, and long preparation time. This hinders the potential tunability of their emission through organic cations, as is instead common practice in Pb-based structures. Here, we present a set of Sn-Br layered perovskite-related structures that display different chromaticity coordinates and photoluminescence quantum yield (PLQY) up to 80%, depending on the choice of the organic monocation. We first develop a synthetic protocol that is performed under air and at 4 °C, requiring only a few steps. X-ray and 3D electron diffraction analyses show that the structures exhibit diverse octahedra connectivity (disconnected and face-sharing) and thus optical properties, while preserving the organic-inorganic layer intercalation. These results provide key insight into a previously underexplored strategy to tune the color coordinates of Pb-free layered perovskites through organic cations with complex molecular configurations.

16.
J Mater Chem A Mater ; 11(24): 12866-12875, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37346737

ABSTRACT

Improving the perovskite/electron-transporting layer (ETL) interface is a crucial task to boost the performance of perovskite solar cells (PSCs). This is utterly fundamental in an inverted (p-i-n) configuration using fullerene-based ETLs. Here, we propose a scalable strategy to improve fullerene-based ETLs by incorporating high-quality few-layer graphene flakes (GFs), industrially produced through wet-jet milling exfoliation of graphite, into phenyl-C61-butyric acid methyl ester (PCBM). Our new composite ETL (GF:PCBM) can be processed into an ultrathin (∼10 nm), pinhole-free film atop the perovskite. We find that the presence of GFs in the PCBM matrix reduces defect-mediated recombination, while creating preferential paths for the extraction of electrons towards the current collector. The use of our GF-based composite ETL resulted in a significant enhancement in the open circuit voltage and fill factor of triple cation-based inverted PSCs, boosting the power conversion efficiency from ∼19% up to 20.8% upon the incorporation of GFs into the ETL.

17.
ACS Appl Mater Interfaces ; 15(25): 30008-30028, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37312240

ABSTRACT

Prostate malignancy represents the second leading cause of cancer-specific death among the male population worldwide. Herein, enhanced intracellular magnetic fluid hyperthermia is applied in vitro to treat prostate cancer (PCa) cells with minimum invasiveness and toxicity and highly specific targeting. We designed and optimized novel shape-anisotropic magnetic core-shell-shell nanoparticles (i.e., trimagnetic nanoparticles - TMNPs) with significant magnetothermal conversion following an exchange coupling effect to an external alternating magnetic field (AMF). The functional properties of the best candidate in terms of heating efficiency (i.e., Fe3O4@Mn0.5Zn0.5Fe2O4@CoFe2O4) were exploited following surface decoration with PCa cell membranes (CM) and/or LN1 cell-penetrating peptide (CPP). We demonstrated that the combination of biomimetic dual CM-CPP targeting and AMF responsiveness significantly induces caspase 9-mediated apoptosis of PCa cells. Furthermore, a downregulation of the cell cycle progression markers and a decrease of the migration rate in surviving cells were observed in response to the TMNP-assisted magnetic hyperthermia, suggesting a reduction in cancer cell aggressiveness.


Subject(s)
Cell-Penetrating Peptides , Hyperthermia, Induced , Magnetite Nanoparticles , Nanoparticles , Prostatic Neoplasms , Male , Humans , Nanoparticles/chemistry , Cell Membrane , Magnetic Fields , Prostatic Neoplasms/therapy , Magnetite Nanoparticles/therapeutic use , Magnetite Nanoparticles/chemistry
18.
ACS Appl Mater Interfaces ; 15(23): 28166-28174, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37259773

ABSTRACT

One major concern toward the performance and stability of halide perovskite-based optoelectronic devices is the formation of metallic lead that promotes nonradiative recombination of charge carriers. The origin of metallic lead formation is being disputed whether it occurs during the perovskite synthesis or only after light, electron, or X-ray beam irradiation or thermal annealing. Here, we show that the quantity of metallic lead detected in perovskite crystals depends on the concentration and composition of the precursor solution. Through a controlled crystallization process, we grew black-colored mixed dimethylammonium (DMA)/methylammonium (MA) lead tribromide crystals. The black color is suggested to be due to the presence of small lead clusters. Despite the unexpected black coloring, the crystals show higher crystallinity and less defect density with respect to the standard yellow-colored DMA/MAPbBr3 crystals, as indicated by X-ray rocking curve and dark current measurements, respectively. While the formation of metallic lead could still be induced by external factors, the precursor solution composition and concentration can facilitate the formation of metallic lead during the crystallization process. Our results indicate that additional research is required to fully understand the perovskite precursor solution chemistry.

19.
ACS Appl Mater Interfaces ; 15(19): 22999-23011, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37132437

ABSTRACT

CuFeS2 chalcopyrite nanoparticles (NPs) can generate heat under exposure to near-infrared laser irradiation. Here, we develop a protocol to decorate the surface of CuFeS2 NPs (13 nm) with a thermoresponsive (TR) polymer based on poly(ethylene glycol methacrylate) to combine heat-mediated drug delivery and photothermal heat damage. The resulting TR-CuFeS2 NPs feature a small hydrodynamic size (∼75 nm), along with high colloidal stability and a TR transition temperature of 41 °C in physiological conditions. Remarkably, TR-CuFeS2 NPs, when exposed to a laser beam (in the range of 0.5 and 1.5 W/cm2) at NP concentrations as low as 40-50 µg Cu/mL, exhibit a high heating performance with a rise in the solution temperature to hyperthermia therapeutic values (42-45 °C). Furthermore, TR-CuFeS2 NPs worked as nanocarriers, being able to load an appreciable amount of doxorubicin (90 µg DOXO/mg Cu), a chemotherapeutic agent whose release could then be triggered by exposing the NPs to a laser beam (through which a hyperthermia temperature above 42 °C could be reached). In an in vitro study performed on U87 human glioblastoma cells, bare TR-CuFeS2 NPs were proven to be nontoxic at a Cu concentration up to 40 µg/mL, while at the same low dose, the drug-loaded TR-CuFeS2-DOXO NPs displayed synergistic cytotoxic effects due to the combination of direct heat damage and DOXO chemotherapy, under photo-irradiation by a 808 nm laser (1.2 W/cm2). Finally, under a 808 nm laser, the TR-CuFeS2 NPs generated a tunable amount of reactive oxygen species depending on the applied power density and NP concentration.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Humans , Polymers , Hyperthermia, Induced/methods , Drug Delivery Systems , Phototherapy , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Cell Line, Tumor
20.
Adv Mater ; 35(38): e2303621, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37243572

ABSTRACT

InAs-based nanocrystals can enable restriction of hazardous substances (RoHS) compliant optoelectronic devices, but their photoluminescence efficiency needs improvement. We report an optimized synthesis of InAs@ZnSe core@shell nanocrystals allowing to tune the ZnSe shell thickness up to seven mono-layers (ML) and to boost the emission, reaching a quantum yield of ≈70% at ≈900 nm. It is demonstrated that a high quantum yield can be attained when the shell thickness is at least ≈3ML. Notably, the photoluminescence lifetimeshows only a minor variation as a function of shell thickness, whereas the Auger recombination time (a limiting aspect in technological applications when fast) slows down from 11 to 38 ps when increasing the shell thickness from 1.5 to 7MLs. Chemical and structural analyses evidence that InAs@ZnSe nanocrystals do not exhibit any strain at the core-shell interface, likely due to the formation of an InZnSe interlayer. This is supported by atomistic modeling, which indicates the interlayer as being composed of In, Zn, Se and cation vacancies, alike to the In2 ZnSe4 crystal structure. The simulations reveal an electronic structure consistent with that of type-I heterostructures, in which localized trap states can be passivated by a thick shell (>3ML) and excitons are confined in the core.

SELECTION OF CITATIONS
SEARCH DETAIL
...